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An arithmetical structure on the complete graph K, with n vertices is given by
a collection of n positive integers with no common factor, each of which divides
their sum. We show that, for all positive integers ¢ less than a certain bound
depending on n, there is an arithmetical structure on K, with largest value c. We
also show that, if each prime factor of c is greater than (n+1)?/4, there is no arith-
metical structure on K,, with largest value c. We apply these results to study which
prime numbers can occur as the largest value of an arithmetical structure on K,,.

1. Introduction

How can one have a collection of positive integers, with no common factor, each of
which divides their sum? For example, 105, 70, 15, 14, and 6 sum to 210, which is
divisible by each of these numbers. Introducing notation, we seek positive integers
ri,r2, ..., r, with no common factor such that

n
p,‘ 3 forall ). (1
i=1

It is well known that finding such r; is equivalent to finding positive integer solutions
of the Diophantine equation

11 1
—+—++—=1 2)
X1 X2 Xn

Indeed, given ry, ra, ..., r, satisfying (1), dividing both sides of the equation
ri+r4-4r,=> 1 ri by Y o, r; gives a solution to (2), and, given a solution
of (2), the numbers lem(xy, x3, ..., x,)/x; satisfy (1) and have no common factor.

Our interest in this question stems from an interest in arithmetical structures.
An arithmetical structure on a finite, connected graph is an assignment of positive
integers to the vertices such that:
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(a) At each vertex, the integer there is a divisor of the sum of the integers at
adjacent vertices (counted with multiplicity if the graph is not simple).

(b) The integers used have no nontrivial common factor.

Arithmetical structures were introduced in [Lorenzini 1989] to study intersections
of degenerating curves in algebraic geometry. The usual definition, easily seen to
be equivalent to the one given here, is formulated in terms of matrices. From that
perspective, an arithmetical structure may be regarded as a generalization of the
Laplacian matrix, which encodes many important properties of a graph. Notions
in this direction that have received a significant amount of attention include the
sandpile group and the chip-firing game; for details, see [Corry and Perkinson 2018;
Klivans 2019; Glass and Kaplan 2019].

On the complete graph K, with n vertices, positive integers ry, r, ..., r, With
no common factor give an arithmetical structure if and only if

n
rj ) Zr,- for all j;

i=1

i#]
it is immediate that this condition is equivalent to (1). Therefore, in this language,
the opening question of this paper seeks arithmetical structures on complete graphs.

Lemma 1.6 of [Lorenzini 1989] shows that there are finitely many arithmetical
structures on any finite, connected graph, but this result does not give a bound on
the number of structures. Several recent papers [Braun et al. 2018; Archer et al.
2020; Glass and Wagner 2019] count arithmetical structures on various families
of graphs, including path graphs, cycle graphs, bidents, and certain path graphs
with doubled edges. However, counting arithmetical structures on complete graphs
is a difficult problem. The number of arithmetical structures on K, for n < 8 is
given in [Sloane 1991]. For general n, bounds have been obtained in [Erdés and
Graham 1980; Sandor 2003; Browning and Elsholtz 2011; Konyagin 2014], which
work from the perspective of the Diophantine equation (2). Other papers such as
[Burshtein 2007; 2008; Arce-Nazario et al. 2013] determine, for specific n, the
number of solutions of (2) satisfying certain additional conditions on the x;.

It is conjectured in [Corrales and Valencia 2018, Conjecture 6.10] that, for any
connected, simple graph G with n vertices, the number of arithmetical structures
on G is at most the number of arithmetical structures on K,. To approach this
conjecture, one would like a better understanding of the types of arithmetical
structures that occur on complete graphs. In this direction, this paper studies which
positive integers can occur as the largest value of an arithmetical structure on K.
Clearly the r; of an arithmetical structure can be permuted; in the following we make
the assumption ry >r, >- - - >r,. We construct arithmetical structures to show that r
can take certain values and give obstructions to show that it cannot take other values.
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Our primary construction theorem (Theorem 1) shows that | can take any value
up to a certain bound depending on n. More specifically, r; can be any positive
integer less than or equal to maxiez_, (2kn — (k 4+ 2K — 2)2%¥ — 1). This bound
improves somewhat if we restrict attention to prime numbers; r; can be any prime
number less than or equal to maxez_, (2kn — (k42K — 3)2k —3).

We also prove an obstruction theorem (Theorem 7) that shows r cannot take any
value all of whose prime factors are greater than (1 + 1)?/4. Restricting attention to
prime numbers, this bound improves to show that r; cannot be any prime number
greater than n?/4 4 1 (Theorem 8).

The final section focuses on the possible prime values 7| can take. We explicitly
check prime numbers in the gap between the bound of Theorem 1 and the bound
of Theorem 8, showing that r; can take some of these values but not others. In
particular, we observe that there can be prime numbers p; and p, with p; < p»
such that there is an arithmetical structure on K,, with r; = p, but no arithmetical
structure on K, with r| = py.

2. Construction

In this section, we show how to construct arithmetical structures on complete graphs
with certain values of ;. Our main construction theorem is the following.
Theorem 1. (a) For any positive integer ¢ < maxgcz_,(28n — (k +2% —2)2F — 1),
there is an arithmetical structure on K, with ri = c.
(b) For any prime number p < maxiez_, (2kn — (k + 2K — 3)2k — 3), there is an
arithmetical structure on K,, with ri = p.

We establish Propositions 2, 4, and 5 on the way to proving Theorem 1.
Proposition 2. For any positive integer c < n — 1, there is an arithmetical structure
on K, withr| =c.

Proof. Let
{c fori e{l,2,...,n—c},
ri =

1 forie{n—c+1,n—c+2,...,n}.
Then

n
Zri =cn—c)+c=cn—c+1).
i=1
Since this is divisible by both ¢ and 1, we have thus produced an arithmetical
structure on K,,. O
Before turning to Propositions 4 and 5, we establish the following lemma.
Lemma 3. (a) Letk € Z>o and £ € Z.o with k < £. Every integer c satisfying £ <
c<(—k+ 1)2]‘ — 1 can be expressed as Zf-:l 2kj forsomek; €{0,1, ..., k},
where kj =0 for some j € {1,2,...,¢}.
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(b) Letk € Z>p and £ € Z-o with k < £. Every odd integer c satisfying £ < c <
(¢ — k +2)2F — 3 can be expressed as Zf.:l 2% for some ki €{0,1,...,k},
where ki =0 for some j € {1,2,...,¢}.

Proof. To show (a), we proceed by induction on c. In the base case, c = £, we
can let k; = O for all j and have ¢ = Z§‘=1 2%, Now suppose ¢ = 2521 2% for
¢ < (£ —k+1)2F—2. Then k; = k for at most £ — k values of j, meaning k; < k
for at least k values of j. If among these values we had each of 0,1, ...,k — 1
only once, we would then have Zﬁ.:l 5=l —k+1D2k—1> U —k+1)2k=2.

Therefore there is some b < k for which k;, = b = kj, for some j; # jo. Define

kj +1 fOI‘j = j],
ki =10 for j = jo,
k; otherwise.

Then Y5, 24 = > 128 +1=c+ 1. The result follows.

For (b), first note that if ¢ < (£ —k + 1)2% — 1 then the result follows from (a).
Therefore, assume ¢ > (L —k+1)2k — 1 andlet ¢’ = c— (£ —k+ 12k = 1), noting
that ¢’ < 2% — 2. Since c is odd, ¢/ must be even. Therefore ¢’ can be written in the
form ZI]:]I sj2j , where each s; is either O or 1; the s; are iteratively determined

in reverse by letting s; = 1 if ¢/ — Skl 520 > 27 and letting s; = 0 otherwise.

i=j+1
Define
0 for j =1,
ki={j—14sj_1 forje{2,3,... k},
k for je{k+1,k+2,...,¢}.
Then
I k k 4
D=3 Y 2l Y = k2 = O
j=1 j=1 j=2 j=k+1

We use Lemma 3 to prove Propositions 4 and 5.

Proposition 4. Fix n > 2. For any positive integer k satisfying k + 2% —1 < n and
any positive integer ¢ satisfyingn —28 +1<c < (n —k — 2% +2)2% — 1, there is an
arithmetical structure on K, withri = c.

Proof. Letr; =cforalli e {1,2,...,2¥ —1}. Let £ = n — 2K + 1, noting that our
assumptions guarantee thatk <fand £ <c < —k+ 1)2% — 1. Lemma 3(a) then
shows how to write ¢ = Zf.:l 2%, We use the values 2%, in decreasing order, to
define r; fori € {2k, 25+ 1, ..., n}, noting that r, = 1. Then

n
Y =@ = De+e=2k.
i=1
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Since 2% ¢ is divisible by c and by 2¥ forall k' € {0, 1, ..., k}, we have thus produced
an arithmetical structure on K. |

Although we imposed the condition k + 2% — 1 < n here to ensure that k < ¢
in the proof, this does not restrict possible values of |, as we show in the proof
of Theorem 1. Together with Proposition 2, Proposition 4 with k = 1 allows us
to construct arithmetical structures on K, with ry taking any value up to 2n — 3.
When k = 2, the bound is 4n — 17; when k = 3, the bound is 8n — 73; and when
k = 4, the bound is 16n — 289. If we restrict attention to prime 1, these bounds
can be improved slightly, as the following proposition shows.

Proposition 5. Fix n > 2. For any positive integer k satisfying k +2* —1 <n and
any prime number p satisfying n — 2k 4+1 < p < (n —k — 2K +3)2% — 3, there is an
arithmetical structure on K, withri = p.

Proof. If p =2 (and n > 3), Proposition 2 gives an arithmetical structure on K,
with 7| = p. Therefore suppose p is odd. Let r; = p forall i € {1,2,...,2Fk—1}.
Let £ = n — 2 + 1, noting that our assumptions guarantee k < £ and £ < p <
(¢ — k +2)2F — 3. Lemma 3(b) then shows how to write p= Zf-:l 2% As in the
proof of Proposition 4, we use the values 2%, in decreasing order, to define r; for
i e {2%,2K4+1,..., n}, noting that r,, = 1. Then

Y o=@ =hp+p=2"p,
i=1

which is divisible by p and by 2 for all k¥’ € {0, 1, ..., k}. Therefore we have
produced an arithmetical structure on K,,. (]

For example, when k = 1, Proposition 5 allows us to construct arithmetical
structures on K, with r; taking prime values as large as 2n — 3. When k = 2, the
bound is 4n — 15; when k = 3, the bound is 8n — 67; and when k = 4, the bound is
16n — 275.

We are now prepared to complete the proof of Theorem 1.

Proof of Theorem 1. The necessary constructions are given in Propositions 2, 4,
and 5. It remains only to show that, for each n, values of k that maximize the upper
bounds in Propositions 4 and 5 satisfy k +2F — 1 <n.

The upper bound (7 —k —2*42)2% — 1 in Proposition 4 is linear in  with slope 2.
A straightforward calculation shows that the bound with slope 2¥~! coincides with
the bound with slope 2¥ when n = k 4+ 3-2%~! — 1 and that the bound with slope 2
coincides with the bound with slope 2! when n = k + 3 - 2%, Therefore the bound
with slope 2* is maximal exactly when n is between k +3-2¢~1 — 1 and k +3 - 2~
When the bound is maximized, we therefore have that n > k+3-2k—1— 1> k4+2¢—1,
meaning the condition of Proposition 4 is satisfied. This proves (a).
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The argument for (b) is very similar. The upper bound (n —k — 2% +3)2¥ —3in
Proposition 5 is maximal for n between k +3-2%~! —2 and k43 -2% — 1. When the
bound is maximized, we then have that n >k +3-28-1 —2 > k 42k — 1, meaning
the condition of Proposition 5 is satisfied. U

We conclude this section by giving another construction that allows us to produce
some arithmetical structures with values of r; other than those guaranteed by
Theorem 1.

Proposition 6. For any positive integer k <n — 1, there is an arithmetical structure
on K, withry =k(n—k) + 1.

Proof. Let
kin—k)y+1 forie{l,2,...,k—1},
ri=1k forief{k,k+1,...,n—1},
1 fori =n.
Then

Y ri= =Dk —k) + 1) +k(n—k)+ 1 =k(k(n—k)+1).
i=1

Since this is divisible by k(n —k)+1, k, and 1, we have thus produced an arithmetical
structure on K,. O

For example, when n =13, Theorem 1 guarantees that we can find an arithmetical
structure on K, with r; = p for all prime p < 37. By taking kK =5 in Proposition 6,
we can also produce an arithmetical structure with 1 =41. By taking k = 6, we can
produce an arithmetical structure with r; = 43. The results of this section cannot
be extended too much further, as we show in the following section.

3. Obstruction

We next prove obstruction results that complement our constructions in the previous
section. Our first result shows that 7| cannot be a product of primes all of which
are too large.

Theorem 7. Suppose ¢ > 2 is an integer with prime factorization p{' py* - - - pi*,
where p; < pa < --- < prand a; > 1 forall i. If p; > (n + 1)?/4, then there is no
arithmetical structure on K, withri = c.

Proof. Suppose we have an arithmetical structure on K, with r; = ¢. Knowing
that ri| ), ri, we define b = Y"1, ri/ri. Then ) ._, r; = bc, meaning that
ri|bp{' p5* -+ - pi* forall i. Let m be the largest value of i for which r; = c. For all
ie{m+1,m+2,...,n}, wehave r; < c, which implies that r; < bp‘l”_lpgz ... pZ".
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ar—1 _a»

This means Zl m+1 rl <(n—m)bp{'”" p5*---p;*. Wealsohave that [ . ri=
(b—m) p1 p2 k. Therefore

(b —m)p;“p;’ i< (n—m)bp T pst e it
and hence (b —m)p; < (n —m)b. When b = m, there is only one arithmetical
structure on K, namely that with ; = 1 for all i, so the desired structure cannot

arise in this case. Therefore we assume b > m, in which case we have
- (n—m)b
Pr=s—F—.
b—m

When b = m + 1, this gives p; < (n —b+ 1)b. Itis a simple calculus exercise to
show this bound is maximized when b = (n + 1) /2. It follows that p; < (n + 1)? /4.
When b > m + 2, we have

(n—m)b _ nb —mb+nm —nm 0 m(n — b) - mmn—m—2)
b—m b—m b—m — 2

It is a simple calculus exercise to show this bound is maximized when m =n/2 —1,

so therefore

pP1 =

n/2—D@n/2—1) n> n 1 m@+D> n’—1 (@n+1)>
< = — — —_ = — < .
pr=nt+ 2 § 723 1 4 = 4
The result follows. ([l

If we restrict attention to arithmetical structures where r; is a prime number,
then Theorem 7 can be improved to Theorem 8. The general outline of the proof is
similar, with some of the bounds improved.

Theorem 8. If p is a prime number with p > n’/4+ 1, then there is no arithmetical
structure on K, with r; = p.

Proof. If p =2, the hypothesis of the theorem is only satisfied for n = 1, and there
is no arithmetical structure on K| with r; = 2. Suppose we have an arithmetical
structure on K, with ri = p, where p > 3. Knowing that r | Z?:l ri, we define
b=7Y"_,ri/r1. Then > ", r; = bp, meaning that r; |bp for all i. Let m be the
largest value of i for which r; = p. We can only have b =m if r; =1 for all i, but
then ry is not prime. We consider two cases: when b =m + 1 and when b > m + 2.

Casel: b=m+ 1. Foralli e {m+1,m+2,...,n}, we have that r;|bp and
r; < p, so therefore r; |b. Whenever r; < b, this means r; <b/2. If r,_y,r, < b,
we would then have that Z;’:m 7 S(m—m—1)b. If instead r; = b for all i €
{m+1,m+2,...,n—1}, we would have that r,, |r; foralli e {m+1,m+2,...,n}.
Since Zf:m 417 = (b—m)p = p, this would also mean r, | p, and hence that r,, | r;

for all i. Therefore we would need to have r, = 1, meaning that Zf:m 1l <
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(n —m — 1)b + 1. Regardless of the value of r,,_1, we thus have
n

p= > ri<(m—m—Db+1l=@n-bb+1=nb—b>+1.
i=m+1
It is a simple calculus exercise to show that this bound is maximized when b =n/2.
Hence we have that p <n?/4+1.

Casell: b >m+2. Wehavethatr; <b forallie {m+1,m+2,...,n} and
Z:’:mﬂ ri = (b —m)p, so therefore (b —m)p < (n —m)b. As in the proof of
Theorem 7, this yields

- (n—m)b <n+m(n—m—2)

El

- b-m - 2
and this bound is maximized when m = n/2 — 1. Therefore
n/2—m/2—1 n*> n 1 n? n—2)2% n?
< =—4+-4+-=—+41- —+ 1.
p=<n+ > g > + 2T + 2 < ) +
We have thus shown that in all cases we must have p < n?/4 + 1. ]

For even n, we can choose k = n/2 in Proposition 6 and get an arithmetical
structure on K, with r; =n?/4 + 1. For odd n, we can choose k = (n — 1)/2 and
get an arithmetical structure on K, with r; = (n> — 1)/4 + 1. As some of these
values of ry are prime, the bound in Theorem 8 therefore cannot be improved.

There are arithmetical structures for which r; takes composite values larger than
the bound given in Theorem 8. For instance, the example in the opening paragraph
of this paper gives an arithmetical structure on Ks with r; = 105.

4. Prime rq

This section considers the possible prime values 7 can take in an arithmetical
structure on K,,. Theorem 1(b) guarantees that r; can take any prime value up to
2%n — (k + 2K — 3)2% — 3 for any k. Theorem 8 says that r; cannot take any prime
value larger than n2/4 + 1. These bounds are not too far from each other. The
function n?/4 + 1 has linear approximations of the form 28z — 2% + 1. When & is
1 or 2, this linear approximation coincides with the bound from Theorem 1(b). In
general, it differs from this bound by (k — 3)2% + 4.

Proposition 6 shows that r| can take some of the prime values in the gap between
the bound of Theorem 1(b) and the bound of Theorem 8. We can check by hand
whether it can take other prime values; to illustrate how to do this, we explain
why there is no arithmetical structure on K3 with r; = 79. Suppose there were
such a structure, and let b = Z,‘lil ri/r1, so that Z}il r; = 79b. Let m be the
largest value of i for which r; = 79. Then Z}imH ri = 79(b — m). For all
ie{m+1,m+2,...,18}, we have that r;|79b and r; < 79. Therefore r; |b,
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yes, no, yes, yes, no,
Theorem 1(b) Theorem 8 Proposition 6 other other

3 p<3 p>3.25

4 p=<5 p>5

5 p<7 p>1.25

6 p<9 p>10

7 p=<13 p>13.25

8 p<17 p>17

9 p<21 p>21.25

10 p<25 p>26

11 p <29 p>31.25 31

12 p=<33 p>37 37

13 p <37 p>43.25 41,43

14 p <45 p>50 47

15 p<53 p>57.25 57

16 p <61 p>65

17 p <69 p>T73.25 71,73

18 p<T77 p>82 79

19 p <85 p>91.25 89

20 p<93 p>101 97, 101

21 p <101 p>111.25 109 103, 107

22 p <109 p>122 113

23 p=<117 p > 133.25 127,131

24 p <125 p > 145 127,131, 137, 139

25 p <133 p>157.25 137,151, 157 139, 149

26 p <141 p>170 149, 151, 157,163 167

27 p <149 p > 183.25 163,181 151,157,167,173 179

Table 1. Possible prime r; in arithmetical structures on K,, for n <27.

and hence r; < b. This means that ZilimH ri < (18 —m)b, so we must have

79(b —m) < (18 —m)b. If b > m + 2, we would have
61b—79m +mb > 61(m+2) —79m +mm+2) = (m —8)>+58 > 0,

which would imply that 79(b—m) > (18 —m)b. Therefore we cannot have b > m+-2.
Since b = m is only possible if r; = 1, it therefore remains to consider whether we
can have b = m + 1. In this case, we would have ZilimH ri < (18 —m)(m+1).
This bound is less than 79 except when m satisfies 6 <m < 11. If m = 6, we would
need to have 12 divisors of 7 that sum to 79, but this is not possible. If m =7,
we would need to have 11 divisors of 8 that sum to 79, but this is not possible.

If m = 8, we would need to have 10 divisors of 9 that sum to 79, but this is not
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possible. If m =9, we would need to have 9 divisors of 10 that sum to 79, but this
is not possible. If m = 10, we would need to have 8 divisors of 11 that sum to 79,
but this is not possible. If m = 11, we would need to have 7 divisors of 12 that sum
to 79, but this is not possible. Therefore there is no arithmetical structure on Kg
with r; = 79. A similar approach can be used to either find arithmetical structures
with other prime values of r; or to show that they do not exist. We have done this
for all n < 27; the results are shown in Table 1.

We conclude by noting that, on K»7, there is no arithmetical structure with
r1 = 179, whereas there is an arithmetical structure with »; = 181. This shows that
there is not a cutoff function f(n) such that, for each n, there is an arithmetical
structure on K, with r; = p for all primes p < f(n) and no such structure for any
p > f(n). Therefore, while one could attempt to improve the bound of Theorem 1(b),
the possible prime values of r; cannot be fully explained by a result of this form.
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