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An arithmetical structure on the complete graph Kn with n vertices is given by
a collection of n positive integers with no common factor, each of which divides
their sum. We show that, for all positive integers c less than a certain bound
depending on n, there is an arithmetical structure on Kn with largest value c. We
also show that, if each prime factor of c is greater than (n+1)2/4, there is no arith-
metical structure on Kn with largest value c. We apply these results to study which
prime numbers can occur as the largest value of an arithmetical structure on Kn .

1. Introduction

How can one have a collection of positive integers, with no common factor, each of
which divides their sum? For example, 105, 70, 15, 14, and 6 sum to 210, which is
divisible by each of these numbers. Introducing notation, we seek positive integers
r1, r2, . . . , rn with no common factor such that

rj

∣∣∣ n∑
i=1

ri for all j . (1)

It is well known that finding such ri is equivalent to finding positive integer solutions
of the Diophantine equation

1
x1
+

1
x2
+ · · ·+

1
xn
= 1. (2)

Indeed, given r1, r2, . . . , rn satisfying (1), dividing both sides of the equation
r1+r2+· · ·+rn =

∑n
i=1 ri by

∑n
i=1 ri gives a solution to (2), and, given a solution

of (2), the numbers lcm(x1, x2, . . . , xn)/xi satisfy (1) and have no common factor.
Our interest in this question stems from an interest in arithmetical structures.

An arithmetical structure on a finite, connected graph is an assignment of positive
integers to the vertices such that:
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(a) At each vertex, the integer there is a divisor of the sum of the integers at
adjacent vertices (counted with multiplicity if the graph is not simple).

(b) The integers used have no nontrivial common factor.

Arithmetical structures were introduced in [Lorenzini 1989] to study intersections
of degenerating curves in algebraic geometry. The usual definition, easily seen to
be equivalent to the one given here, is formulated in terms of matrices. From that
perspective, an arithmetical structure may be regarded as a generalization of the
Laplacian matrix, which encodes many important properties of a graph. Notions
in this direction that have received a significant amount of attention include the
sandpile group and the chip-firing game; for details, see [Corry and Perkinson 2018;
Klivans 2019; Glass and Kaplan 2019].

On the complete graph Kn with n vertices, positive integers r1, r2, . . . , rn with
no common factor give an arithmetical structure if and only if

rj

∣∣∣ n∑
i=1
i 6= j

ri for all j;

it is immediate that this condition is equivalent to (1). Therefore, in this language,
the opening question of this paper seeks arithmetical structures on complete graphs.

Lemma 1.6 of [Lorenzini 1989] shows that there are finitely many arithmetical
structures on any finite, connected graph, but this result does not give a bound on
the number of structures. Several recent papers [Braun et al. 2018; Archer et al.
2020; Glass and Wagner 2019] count arithmetical structures on various families
of graphs, including path graphs, cycle graphs, bidents, and certain path graphs
with doubled edges. However, counting arithmetical structures on complete graphs
is a difficult problem. The number of arithmetical structures on Kn for n ≤ 8 is
given in [Sloane 1991]. For general n, bounds have been obtained in [Erdős and
Graham 1980; Sándor 2003; Browning and Elsholtz 2011; Konyagin 2014], which
work from the perspective of the Diophantine equation (2). Other papers such as
[Burshtein 2007; 2008; Arce-Nazario et al. 2013] determine, for specific n, the
number of solutions of (2) satisfying certain additional conditions on the xi .

It is conjectured in [Corrales and Valencia 2018, Conjecture 6.10] that, for any
connected, simple graph G with n vertices, the number of arithmetical structures
on G is at most the number of arithmetical structures on Kn . To approach this
conjecture, one would like a better understanding of the types of arithmetical
structures that occur on complete graphs. In this direction, this paper studies which
positive integers can occur as the largest value of an arithmetical structure on Kn .
Clearly the ri of an arithmetical structure can be permuted; in the following we make
the assumption r1≥r2≥· · ·≥rn . We construct arithmetical structures to show that r1

can take certain values and give obstructions to show that it cannot take other values.
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Our primary construction theorem (Theorem 1) shows that r1 can take any value
up to a certain bound depending on n. More specifically, r1 can be any positive
integer less than or equal to maxk∈Z>0(2

kn − (k + 2k
− 2)2k

− 1). This bound
improves somewhat if we restrict attention to prime numbers; r1 can be any prime
number less than or equal to maxk∈Z>0(2

kn− (k+ 2k
− 3)2k

− 3).
We also prove an obstruction theorem (Theorem 7) that shows r1 cannot take any

value all of whose prime factors are greater than (n+1)2/4. Restricting attention to
prime numbers, this bound improves to show that r1 cannot be any prime number
greater than n2/4+ 1 (Theorem 8).

The final section focuses on the possible prime values r1 can take. We explicitly
check prime numbers in the gap between the bound of Theorem 1 and the bound
of Theorem 8, showing that r1 can take some of these values but not others. In
particular, we observe that there can be prime numbers p1 and p2 with p1 < p2

such that there is an arithmetical structure on Kn with r1 = p2 but no arithmetical
structure on Kn with r1 = p1.

2. Construction

In this section, we show how to construct arithmetical structures on complete graphs
with certain values of r1. Our main construction theorem is the following.

Theorem 1. (a) For any positive integer c ≤maxk∈Z>0(2
kn− (k+2k

−2)2k
−1),

there is an arithmetical structure on Kn with r1 = c.

(b) For any prime number p ≤ maxk∈Z>0(2
kn− (k + 2k

− 3)2k
− 3), there is an

arithmetical structure on Kn with r1 = p.

We establish Propositions 2, 4, and 5 on the way to proving Theorem 1.

Proposition 2. For any positive integer c≤ n−1, there is an arithmetical structure
on Kn with r1 = c.

Proof. Let

ri =

{
c for i ∈ {1, 2, . . . , n− c},
1 for i ∈ {n− c+ 1, n− c+ 2, . . . , n}.

Then n∑
i=1

ri = c(n− c)+ c = c(n− c+ 1).

Since this is divisible by both c and 1, we have thus produced an arithmetical
structure on Kn . �

Before turning to Propositions 4 and 5, we establish the following lemma.

Lemma 3. (a) Let k ∈ Z≥0 and ` ∈ Z>0 with k ≤ `. Every integer c satisfying `≤
c≤ (`−k+1)2k

−1 can be expressed as
∑`

j=1 2kj for some kj ∈ {0, 1, . . . , k},
where kj = 0 for some j ∈ {1, 2, . . . , `}.
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(b) Let k ∈ Z≥0 and ` ∈ Z>0 with k ≤ `. Every odd integer c satisfying ` ≤ c ≤
(`− k + 2)2k

− 3 can be expressed as
∑`

j=1 2kj for some kj ∈ {0, 1, . . . , k},
where kj = 0 for some j ∈ {1, 2, . . . , `}.

Proof. To show (a), we proceed by induction on c. In the base case, c = `, we
can let kj = 0 for all j and have c =

∑`
j=1 2kj . Now suppose c =

∑`
j=1 2kj for

c ≤ (`− k+ 1)2k
− 2. Then kj = k for at most `− k values of j , meaning kj < k

for at least k values of j . If among these values we had each of 0, 1, . . . , k − 1
only once, we would then have

∑`
j=1 2kj = (`− k+ 1)2k

− 1> (`− k+ 1)2k
− 2.

Therefore there is some b < k for which kj1 = b = kj2 for some j1 6= j2. Define

k ′j =


kj + 1 for j = j1,
0 for j = j2,
kj otherwise.

Then
∑`

j=1 2k′j =
∑`

j=1 2kj + 1= c+ 1. The result follows.
For (b), first note that if c ≤ (`− k+ 1)2k

− 1 then the result follows from (a).
Therefore, assume c> (`−k+1)2k

−1 and let c′ = c− ((`−k+1)2k
−1), noting

that c′ ≤ 2k
− 2. Since c is odd, c′ must be even. Therefore c′ can be written in the

form
∑k−1

j=1 sj 2 j , where each sj is either 0 or 1; the sj are iteratively determined
in reverse by letting sj = 1 if c′−

∑k−1
i= j+1 si 2i

≥ 2 j and letting sj = 0 otherwise.
Define

kj =


0 for j = 1,
j − 1+ sj−1 for j ∈ {2, 3, . . . , k},
k for j ∈ {k+ 1, k+ 2, . . . , `}.

Then∑̀
j=1

2kj =

k∑
j=1

2 j−1
+

k∑
j=2

sj−12 j−1
+

∑̀
j=k+1

2k
= 2k
− 1+ c′+ (`− k)2k

= c. �

We use Lemma 3 to prove Propositions 4 and 5.

Proposition 4. Fix n ≥ 2. For any positive integer k satisfying k+ 2k
− 1≤ n and

any positive integer c satisfying n−2k
+1≤ c≤ (n− k−2k

+2)2k
−1, there is an

arithmetical structure on Kn with r1 = c.

Proof. Let ri = c for all i ∈ {1, 2, . . . , 2k
− 1}. Let `= n− 2k

+ 1, noting that our
assumptions guarantee that k ≤ ` and `≤ c ≤ (`− k+ 1)2k

− 1. Lemma 3(a) then
shows how to write c =

∑`
j=1 2kj. We use the values 2kj, in decreasing order, to

define ri for i ∈ {2k, 2k
+ 1, . . . , n}, noting that rn = 1. Then

n∑
i=1

ri = (2k
− 1)c+ c = 2kc.
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Since 2kc is divisible by c and by 2k′ for all k ′∈{0, 1, . . . , k}, we have thus produced
an arithmetical structure on Kn . �

Although we imposed the condition k + 2k
− 1 ≤ n here to ensure that k ≤ `

in the proof, this does not restrict possible values of r1, as we show in the proof
of Theorem 1. Together with Proposition 2, Proposition 4 with k = 1 allows us
to construct arithmetical structures on Kn with r1 taking any value up to 2n− 3.
When k = 2, the bound is 4n− 17; when k = 3, the bound is 8n− 73; and when
k = 4, the bound is 16n− 289. If we restrict attention to prime r1, these bounds
can be improved slightly, as the following proposition shows.

Proposition 5. Fix n ≥ 2. For any positive integer k satisfying k+ 2k
− 1≤ n and

any prime number p satisfying n− 2k
+ 1≤ p ≤ (n− k− 2k

+ 3)2k
− 3, there is an

arithmetical structure on Kn with r1 = p.

Proof. If p = 2 (and n ≥ 3), Proposition 2 gives an arithmetical structure on Kn

with r1 = p. Therefore suppose p is odd. Let ri = p for all i ∈ {1, 2, . . . , 2k
− 1}.

Let ` = n − 2k
+ 1, noting that our assumptions guarantee k ≤ ` and ` ≤ p ≤

(`− k+ 2)2k
− 3. Lemma 3(b) then shows how to write p =

∑`
j=1 2kj . As in the

proof of Proposition 4, we use the values 2kj, in decreasing order, to define ri for
i ∈ {2k, 2k

+ 1, . . . , n}, noting that rn = 1. Then
n∑

i=1

ri = (2k
− 1)p+ p = 2k p,

which is divisible by p and by 2k′ for all k ′ ∈ {0, 1, . . . , k}. Therefore we have
produced an arithmetical structure on Kn . �

For example, when k = 1, Proposition 5 allows us to construct arithmetical
structures on Kn with r1 taking prime values as large as 2n− 3. When k = 2, the
bound is 4n− 15; when k = 3, the bound is 8n− 67; and when k = 4, the bound is
16n− 275.

We are now prepared to complete the proof of Theorem 1.

Proof of Theorem 1. The necessary constructions are given in Propositions 2, 4,
and 5. It remains only to show that, for each n, values of k that maximize the upper
bounds in Propositions 4 and 5 satisfy k+ 2k

− 1≤ n.
The upper bound (n−k−2k

+2)2k
−1 in Proposition 4 is linear in n with slope 2k.

A straightforward calculation shows that the bound with slope 2k−1 coincides with
the bound with slope 2k when n = k+3 ·2k−1

−1 and that the bound with slope 2k

coincides with the bound with slope 2k+1 when n = k+ 3 · 2k. Therefore the bound
with slope 2k is maximal exactly when n is between k+ 3 · 2k−1

− 1 and k+ 3 · 2k.
When the bound is maximized, we therefore have that n≥ k+3·2k−1

−1≥ k+2k
−1,

meaning the condition of Proposition 4 is satisfied. This proves (a).
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The argument for (b) is very similar. The upper bound (n− k− 2k
+ 3)2k

− 3 in
Proposition 5 is maximal for n between k+3 ·2k−1

−2 and k+3 ·2k
−1. When the

bound is maximized, we then have that n ≥ k+ 3 · 2k−1
− 2≥ k+ 2k

− 1, meaning
the condition of Proposition 5 is satisfied. �

We conclude this section by giving another construction that allows us to produce
some arithmetical structures with values of r1 other than those guaranteed by
Theorem 1.

Proposition 6. For any positive integer k ≤ n−1, there is an arithmetical structure
on Kn with r1 = k(n− k)+ 1.

Proof. Let

ri =


k(n− k)+ 1 for i ∈ {1, 2, . . . , k− 1},
k for i ∈ {k, k+ 1, . . . , n− 1},
1 for i = n.

Then
n∑

i=1

ri = (k− 1)(k(n− k)+ 1)+ k(n− k)+ 1= k(k(n− k)+ 1).

Since this is divisible by k(n−k)+1, k, and 1, we have thus produced an arithmetical
structure on Kn . �

For example, when n= 13, Theorem 1 guarantees that we can find an arithmetical
structure on Kn with r1 = p for all prime p ≤ 37. By taking k = 5 in Proposition 6,
we can also produce an arithmetical structure with r1= 41. By taking k = 6, we can
produce an arithmetical structure with r1 = 43. The results of this section cannot
be extended too much further, as we show in the following section.

3. Obstruction

We next prove obstruction results that complement our constructions in the previous
section. Our first result shows that r1 cannot be a product of primes all of which
are too large.

Theorem 7. Suppose c ≥ 2 is an integer with prime factorization pa1
1 pa2

2 · · · p
ak
k ,

where p1 < p2 < · · ·< pk and ai ≥ 1 for all i . If p1 > (n+ 1)2/4, then there is no
arithmetical structure on Kn with r1 = c.

Proof. Suppose we have an arithmetical structure on Kn with r1 = c. Knowing
that r1 |

∑n
i=1 ri , we define b =

∑n
i=1 ri/r1. Then

∑n
i=1 ri = bc, meaning that

ri |bpa1
1 pa2

2 · · · p
ak
k for all i . Let m be the largest value of i for which ri = c. For all

i ∈ {m+1,m+2, . . . , n}, we have ri < c, which implies that ri ≤ bpa1−1
1 pa2

2 · · · p
ak
k .
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This means
∑n

i=m+1 ri ≤ (n−m)bpa1−1
1 pa2

2 · · · p
ak
k . We also have that

∑n
i=m+1 ri =

(b−m)pa1
1 pa2

2 · · · p
ak
k . Therefore

(b−m)pa1
1 pa2

2 · · · p
ak
k ≤ (n−m)bpa1−1

1 pa2
2 · · · p

ak
k ,

and hence (b−m)p1 ≤ (n −m)b. When b = m, there is only one arithmetical
structure on Kn , namely that with ri = 1 for all i , so the desired structure cannot
arise in this case. Therefore we assume b > m, in which case we have

p1 ≤
(n−m)b

b−m
.

When b=m+1, this gives p1 ≤ (n−b+1)b. It is a simple calculus exercise to
show this bound is maximized when b= (n+1)/2. It follows that p1 ≤ (n+1)2/4.

When b ≥ m+ 2, we have

p1 ≤
(n−m)b

b−m
=

nb−mb+ nm− nm
b−m

= n+
m(n− b)

b−m
≤ n+

m(n−m− 2)
2

.

It is a simple calculus exercise to show this bound is maximized when m = n/2−1,
so therefore

p1 ≤ n+
(n/2− 1)(n/2− 1)

2
=

n2

8
+

n
2
+

1
2
=
(n+ 1)2

4
−

n2
− 1
4
≤
(n+ 1)2

4
.

The result follows. �

If we restrict attention to arithmetical structures where r1 is a prime number,
then Theorem 7 can be improved to Theorem 8. The general outline of the proof is
similar, with some of the bounds improved.

Theorem 8. If p is a prime number with p> n2/4+1, then there is no arithmetical
structure on Kn with r1 = p.

Proof. If p = 2, the hypothesis of the theorem is only satisfied for n = 1, and there
is no arithmetical structure on K1 with r1 = 2. Suppose we have an arithmetical
structure on Kn with r1 = p, where p ≥ 3. Knowing that r1 |

∑n
i=1 ri , we define

b =
∑n

i=1 ri/r1. Then
∑n

i=1 ri = bp, meaning that ri |bp for all i . Let m be the
largest value of i for which ri = p. We can only have b = m if ri = 1 for all i , but
then r1 is not prime. We consider two cases: when b = m+ 1 and when b ≥ m+ 2.

Case I: b = m + 1. For all i ∈ {m + 1,m + 2, . . . , n}, we have that ri |bp and
ri < p, so therefore ri |b. Whenever ri < b, this means ri ≤ b/2. If rn−1, rn < b,
we would then have that

∑n
i=m+1 ri ≤ (n−m − 1)b. If instead ri = b for all i ∈

{m+1,m+2, . . . , n−1}, we would have that rn |ri for all i ∈ {m+1,m+2, . . . , n}.
Since

∑n
i=m+1 ri = (b−m)p= p, this would also mean rn | p, and hence that rn |ri

for all i . Therefore we would need to have rn = 1, meaning that
∑n

i=m+1 ri ≤
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(n−m− 1)b+ 1. Regardless of the value of rn−1, we thus have

p =
n∑

i=m+1

ri ≤ (n−m− 1)b+ 1= (n− b)b+ 1= nb− b2
+ 1.

It is a simple calculus exercise to show that this bound is maximized when b= n/2.
Hence we have that p ≤ n2/4+ 1.

Case II: b ≥ m + 2. We have that ri ≤ b for all i ∈ {m + 1,m + 2, . . . , n} and∑n
i=m+1 ri = (b − m)p, so therefore (b − m)p ≤ (n − m)b. As in the proof of

Theorem 7, this yields

p ≤
(n−m)b

b−m
≤ n+

m(n−m− 2)
2

,

and this bound is maximized when m = n/2− 1. Therefore

p ≤ n+
(n/2− 1)(n/2− 1)

2
=

n2

8
+

n
2
+

1
2
=

n2

4
+ 1−

(n− 2)2

8
<

n2

4
+ 1.

We have thus shown that in all cases we must have p ≤ n2/4+ 1. �

For even n, we can choose k = n/2 in Proposition 6 and get an arithmetical
structure on Kn with r1 = n2/4+ 1. For odd n, we can choose k = (n− 1)/2 and
get an arithmetical structure on Kn with r1 = (n2

− 1)/4+ 1. As some of these
values of r1 are prime, the bound in Theorem 8 therefore cannot be improved.

There are arithmetical structures for which r1 takes composite values larger than
the bound given in Theorem 8. For instance, the example in the opening paragraph
of this paper gives an arithmetical structure on K5 with r1 = 105.

4. Prime r1

This section considers the possible prime values r1 can take in an arithmetical
structure on Kn . Theorem 1(b) guarantees that r1 can take any prime value up to
2kn− (k+ 2k

− 3)2k
− 3 for any k. Theorem 8 says that r1 cannot take any prime

value larger than n2/4+ 1. These bounds are not too far from each other. The
function n2/4+ 1 has linear approximations of the form 2kn− 22k

+ 1. When k is
1 or 2, this linear approximation coincides with the bound from Theorem 1(b). In
general, it differs from this bound by (k− 3)2k

+ 4.
Proposition 6 shows that r1 can take some of the prime values in the gap between

the bound of Theorem 1(b) and the bound of Theorem 8. We can check by hand
whether it can take other prime values; to illustrate how to do this, we explain
why there is no arithmetical structure on K18 with r1 = 79. Suppose there were
such a structure, and let b =

∑18
i=1 ri/r1, so that

∑18
i=1 ri = 79b. Let m be the

largest value of i for which ri = 79. Then
∑18

i=m+1 ri = 79(b − m). For all
i ∈ {m + 1,m + 2, . . . , 18}, we have that ri |79b and ri < 79. Therefore ri |b,
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n yes, no, yes, yes, no,
Theorem 1(b) Theorem 8 Proposition 6 other other

3 p≤ 3 p> 3.25
4 p≤ 5 p> 5
5 p≤ 7 p> 7.25
6 p≤ 9 p> 10
7 p≤ 13 p> 13.25
8 p≤ 17 p> 17
9 p≤ 21 p> 21.25

10 p≤ 25 p> 26
11 p≤ 29 p> 31.25 31
12 p≤ 33 p> 37 37
13 p≤ 37 p> 43.25 41, 43
14 p≤ 45 p> 50 47
15 p≤ 53 p> 57.25 57
16 p≤ 61 p> 65
17 p≤ 69 p> 73.25 71, 73
18 p≤ 77 p> 82 79
19 p≤ 85 p> 91.25 89
20 p≤ 93 p> 101 97, 101
21 p≤ 101 p> 111.25 109 103, 107
22 p≤ 109 p> 122 113
23 p≤ 117 p> 133.25 127, 131
24 p≤ 125 p> 145 127, 131, 137, 139
25 p≤ 133 p> 157.25 137, 151, 157 139, 149
26 p≤ 141 p> 170 149, 151, 157, 163 167
27 p≤ 149 p> 183.25 163, 181 151, 157, 167, 173 179

Table 1. Possible prime r1 in arithmetical structures on Kn for n≤ 27.

and hence ri ≤ b. This means that
∑18

i=m+1 ri ≤ (18 − m)b, so we must have
79(b−m)≤ (18−m)b. If b ≥ m+ 2, we would have

61b− 79m+mb ≥ 61(m+ 2)− 79m+m(m+ 2)= (m− 8)2+ 58> 0,

which would imply that 79(b−m)> (18−m)b. Therefore we cannot have b≥m+2.
Since b = m is only possible if r1 = 1, it therefore remains to consider whether we
can have b = m + 1. In this case, we would have

∑18
i=m+1 ri ≤ (18−m)(m + 1).

This bound is less than 79 except when m satisfies 6≤m ≤ 11. If m = 6, we would
need to have 12 divisors of 7 that sum to 79, but this is not possible. If m = 7,
we would need to have 11 divisors of 8 that sum to 79, but this is not possible.
If m = 8, we would need to have 10 divisors of 9 that sum to 79, but this is not
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possible. If m = 9, we would need to have 9 divisors of 10 that sum to 79, but this
is not possible. If m = 10, we would need to have 8 divisors of 11 that sum to 79,
but this is not possible. If m = 11, we would need to have 7 divisors of 12 that sum
to 79, but this is not possible. Therefore there is no arithmetical structure on K18

with r1 = 79. A similar approach can be used to either find arithmetical structures
with other prime values of r1 or to show that they do not exist. We have done this
for all n ≤ 27; the results are shown in Table 1.

We conclude by noting that, on K27, there is no arithmetical structure with
r1 = 179, whereas there is an arithmetical structure with r1 = 181. This shows that
there is not a cutoff function f (n) such that, for each n, there is an arithmetical
structure on Kn with r1 = p for all primes p ≤ f (n) and no such structure for any
p> f (n). Therefore, while one could attempt to improve the bound of Theorem 1(b),
the possible prime values of r1 cannot be fully explained by a result of this form.

Acknowledgments

We would like to thank Nathan Kaplan for a helpful conversation. Harris was
supported by a Niagara University Undergraduate Student Summer Support Grant.

References

[Arce-Nazario et al. 2013] R. Arce-Nazario, F. Castro, and R. Figueroa, “On the number of solutions
of
∑11

i=1 1/xi = 1 in distinct odd natural numbers”, J. Number Theory 133:6 (2013), 2036–2046.
MR Zbl

[Archer et al. 2020] K. Archer, A. C. Bishop, A. Diaz-Lopez, L. D. García Puente, D. Glass, and J.
Louwsma, “Arithmetical structures on bidents”, Discrete Math. 343:7 (2020), 111850. MR

[Braun et al. 2018] B. Braun, H. Corrales, S. Corry, L. D. García Puente, D. Glass, N. Kaplan, J. L.
Martin, G. Musiker, and C. E. Valencia, “Counting arithmetical structures on paths and cycles”,
Discrete Math. 341:10 (2018), 2949–2963. MR Zbl

[Browning and Elsholtz 2011] T. D. Browning and C. Elsholtz, “The number of representations of
rationals as a sum of unit fractions”, Illinois J. Math. 55:2 (2011), 685–696. MR Zbl

[Burshtein 2007] N. Burshtein, “The equation
∑9

i=1 1/xi = 1 in distinct odd integers has only the
five known solutions”, J. Number Theory 127:1 (2007), 136–144. MR Zbl

[Burshtein 2008] N. Burshtein, “All the solutions of the equation
∑11

i=1 1/xi = 1 in distinct integers
of the form xi ∈ 3α5β7γ ”, Discrete Math. 308:18 (2008), 4286–4292. MR Zbl

[Corrales and Valencia 2018] H. Corrales and C. E. Valencia, “Arithmetical structures on graphs”,
Linear Algebra Appl. 536 (2018), 120–151. MR Zbl

[Corry and Perkinson 2018] S. Corry and D. Perkinson, Divisors and sandpiles: an introduction to
chip-firing, American Mathematical Society, Providence, RI, 2018. MR Zbl
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