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We classify all of the five-sided three-dimensional hyperbolic polyhedra with one
ideal vertex, which have the shape of a triangular prism, and which give rise to a
discrete reflection group. We show how to find each such polyhedron in the upper
half-space model by considering lines and circles in the plane. Finally, we give
matrix generators in PSL2(C) for the orientation-preserving subgroup of each
corresponding reflection group.

1. Introduction

A convex polyhedron in hyperbolic 3-space H3 generates a discrete group of
isometries if the dihedral angles at which its bounding planes meet are all integer
submultiples of π — that is, each angle is of the form π

n radians for an integer n≥2 —
and if the dihedral angles satisfy some other combinatorial criteria. The set of all
such polyhedra is infinite, with some partial classifications completed. For example,
the fewest sides such a polyhedron may have is four, and the 32 hyperbolic tetrahedra
were found in [Lannér 1950; Vinberg 1967; Thurston 1979]. The 825 smallest-
volume all-right-angled polyhedra were found in [Inoue 2015].

For certain computations, it is helpful to know matrix generators in PSL2(C)

for the orientation-preserving index-2 subgroups of these reflection groups. Such
generators were found for some of the tetrahedral groups by Brunner, Lee, and
Wielenberg [Brunner et al. 1985], and the second author has shown how to find
these for all 32 tetrahedra [Lakeland 2010]. These matrix generators have recently
been used, for example, in [Hoffman 2014] to study knot complements which cover
tetrahedral orbifolds, and in [Şengün 2012] to study growth in torsion homology of
subgroups of the tetrahedral groups.

In this paper, we perform the same calculations for one class of five-sided
polyhedra, which when drawn schematically resemble triangular prisms. The set of
all such polyhedra is infinite, and for simplicity we restrict our attention to such
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polyhedra which have one ideal vertex and five finite vertices. As such, all of our
examples are noncompact. We find:

Theorem 1.1. Up to relabeling by symmetry of the prism, there are 12 infinite
families of prisms with exactly one ideal vertex, each of which has one dihedral
angle which may be any integer submultiple of π less than or equal to π

6 . In
addition, there are 78 specific arrangements, where in each case all dihedral angles
not incident to the ideal vertex are at least π5 .

We note that the list of polyhedra considered in this paper overlaps with those
considered by Kaplinskaja [1974], who studied finite-volume simplicial prisms in
H3, H4 and H5 which give rise to discrete reflection groups, and listed their Coxeter
graphs. Each of our prisms either appears there, or can be decomposed into two
polyhedra which do. As such, our classification is not new, although we do not
believe that our polyhedra have previously been listed in this way. The Coxeter
graphs of these polyhedra do not immediately allow one to produce isometries
which generate the orientation-preserving subgroup, and in this paper we provide a
method for this.

The method used is the following. First, we use Andreev’s theorem to set up
the combinatorial rules which the dihedral angles must satisfy, and we find all
admissible arrangements of angles which satisfy these rules. Then, we reduce the
problem of finding hyperbolic planes in the upper half-space H3 which meet at
these prescribed angles to a similar problem, involving finding lines and circles in
the plane which meet at the same angles. Finally, we use this geometric data to
write down matrix generators for each group.

This paper is organized as follows. After some geometric preliminaries in
Section 2, in Section 3 we describe all of the possible arrangements of angles which
are possible for our prisms, grouped by the possible angles at the ideal vertex. We
also outline a method to locate each prism precisely in H3. In Section 4 we describe
a general method to find each prism and write down corresponding matrices which
generate the orientation-preserving subgroup of isometries of H3, and in Section 5
we summarize the possible angle arrangements in tables.

2. Geometric preliminaries

We recall some definitions and results about hyperbolic polyhedra. We will work in
the upper half-space model for H3, {(x, y, z) ∈ R3

| z > 0}, and we recall that in
this model, geodesic lines are vertical lines and semicircles which meet the plane
{z = 0} perpendicularly, and geodesic planes are vertical planes and hemispheres
whose equators lie in the plane {z = 0}.

We first note that in order for a polyhedron to generate a discrete reflection group,
all of its dihedral angles must be integer submultiples of π radians, and the integer
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must be no less than 2. In this paper, we will label a dihedral angle of π
n by the

natural number n.

Definition. A triangle is Euclidean if its angles p, q , and r satisfy

π

p
+
π

q
+
π

r
= π or

1
p
+

1
q
+

1
r
= 1.

Definition. A triangle is spherical if its angles p, q , and r satisfy

1
p
+

1
q
+

1
r
> 1.

Definition. A triangle is hyperbolic if its angles p, q , and r satisfy

1
p
+

1
q
+

1
r
< 1.

With these definitions in mind, we will appeal to Andreev’s theorem [1970]
for hyperbolic polyhedra, which specifies exactly what conditions a combinatorial
arrangement of dihedral angles must satisfy in order for it to give rise to a hyperbolic
polyhedron. For the precise statement given below, we refer to work of Dunbar,
Hubbard, and Roeder [Roeder et al. 2007].

Theorem 2.1 (Andreev). If P is a compact, finite-sided hyperbolic polyhedron with
dihedral angle αi at each edge ei , then the following conditions hold:

(1) For each i , we have αi > 0.

(2) If three edges ei , ej , ek meet at a vertex, then αi +αj +αk > π .

(3) If there exists a prismatic 3-circuit intersecting ei , ej and ek , then αi+αj+αk<π .

(4) If there exists a prismatic 4-circuit intersecting ei , ej , ek and el , then αi +αj +

αk +αl < 2π .

(5) For a quadrilateral face with edges enumerated successively e1, e2, e3 and e4,
if e12, e23, e34, and e41 are such that e12 is the third edge meeting at the vertex
where e1 and e2 intersect (and similarly for other ei j ), then

(a) α1+α3+α12+α23+α34+α41 < 3π , and
(b) α2+α4+α12+α23+α34+α41 < 3π .

The dihedral angle of intersection of two planes in the upper half-space model
of H3 is the same as the angle between the respective tangent planes at any point of
intersection. Since these planes are either vertical Euclidean planes or Euclidean
spheres with center on the plane {z= 0}, if two planes intersect, they have a common
point on the plane {z = 0}. In this case, the respective tangent planes are both
vertical Euclidean planes, and so the dihedral angle is the angle the tangent planes
make in the xy-plane.
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Figure 1. The vertical line is x = r cos θ .

With this in mind, we observe that the aim of finding five hyperbolic planes
which intersect at prescribed angles may be reduced to finding five lines and circles
in the xy-plane which intersect at the same prescribed angles. Since three of our
planes intersect at an ideal vertex, we may place this ideal vertex at∞, and thereby
assume that the three planes are vertical Euclidean planes. These will correspond
to Euclidean lines in the xy-plane. The remaining two sides will then correspond
to circles in the xy-plane; since angles of intersection are preserved by Euclidean
similarities, we may take one of the circles to be the unit circle in the xy-plane.

With these assumptions about our setup in place, when finding lines and circles
which intersect at given angles, we will appeal frequently to the following results.

Lemma 2.2. A line that intersects a circle of radius r at angle θ comes distance
r cos(θ) away from the center of the circle at its closest point.

Proof. After translating and rotating if necessary, we may assume that the line is
vertical, and further that it is of the form x=a for a≥0, and that the circle is centered
at the origin. The intersection points are then (a,

√
r − a2) and (a,−

√
r − a2);

we focus on the former. The angle θ is the angle at which the line x = a and the
tangent line to the circle at this point intersect (see Figure 1). Since the radius of
the unit circle meets the tangent line at a right angle, the triangle with vertices at
(0, 0), (a, 0) and (a,

√
r − a2) has an angle of π2 − θ at (a,

√
r − a2). This triangle

has a right angle at (a, 0), and so must have angle θ at (0, 0). Since the hypotenuse
of the triangle is a radius of the unit circle, it follows that a = cos (θ). �

When finding the precise location of the prism in the upper half-space, we will
need to find three lines (corresponding to vertical planes which “meet” at the ideal
vertex) and two circles (corresponding to nonvertical planes). We will take one
circle to be the unit circle and then find the three lines based on that. One of the
lines will be taken to be x = c for some constant c; the other two lines will have
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(x0,y0)

φ

φ

Figure 2. The circle has center (x0, y0) and radius r ; the other arc
is part of the unit circle.

the form y = mx + b, with slope m and y-intercept b. In order to find the second
circle, we will find three equations, corresponding to the three angles at which that
plane meets three other planes, in the three unknowns (x0, y0) and r , representing,
respectively, the coordinates of the center, and the radius, of the second circle.
This circle will meet the unit circle and two lines; in some circumstances, we will
need an equation coming from the fact that the second circle meets a given line
y = mx + b at a prescribed angle φ.

Lemma 2.3. If a circle with center (x0, y0) and radius r meets the line y =mx+b
at angle φ, and (x0, y0) lies on or above the line (that is, y0 ≥mx0+b), then x0, y0

and r satisfy

y0−
r cosφ
√

m2+ 1
= m

(
x0+

mr cosφ
√

m2+ 1

)
+ b.

Proof. The vector 〈1,m〉 is parallel to the line, so the vector 〈m,−1〉 is perpendicular
to the line. The unit vector parallel to this is〈

m
√

m2+ 1
,
−1

√
m2+ 1

〉
.

By trigonometry (see Figure 2), we see that the point which is distance r cosφ away
from (x0, y0) in the direction of this vector lies on the line. Therefore, plugging the
x- and y-coordinates of the vector〈

x0+ r cosφ
m

√
m2+ 1

, y0− r cosφ
1

√
m2+ 1

〉
into the formula y = mx + b yields the required equation. �
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Figure 3. The circles meet at angle φ.

We will obtain another of our three equations by using the angle φ at which the
second circle meets the unit circle.

Lemma 2.4. If a circle with center (x, y) and radius r meets the unit circle at
angle φ, then x, y, and r satisfy

x2
+ y2
= 1+ r2

+ 2(cosφ)r.

Proof. This is an application of the cosine law to the triangle whose vertices are at
(0, 0), (x, y), and one of the points where the circles intersect (see Figure 3). This
triangle has side lengths, 1, r and

√
x2+ y2. The angle opposite the latter side is

π − φ because the angle between the respective tangent lines at this vertex is φ,
and the two angles between the tangent lines and their respective radii are both π

2 .
The equation follows from the fact that cos (π −φ)=− cosφ. �

3. Prisms

We now will describe the dihedral angles of all hyperbolic triangular prisms with one
ideal vertex, and a way to construct each prism in the upper half-space model of H3.
There, the dihedral angles will be the angles at which the vertical and hemispherical
geodesic planes intersect. We will find these planes by considering the lines and
circles where they intersect with the plane {(x, y, z) | z = 0}, where we find lines
and circles which must intersect at the same prescribed angles.

Such a prism is specified by nine positive integers, which we will denote as
a1 through a9, corresponding to dihedral angles π/ai . We label the prism as in
Figure 4.
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a1 a2

a3

a4 a5
a6

a7 a8

a9

Figure 4. The labels a1 through a9.

We note that due to the reflectional symmetry of the prism, once we have treated
one prism, we have also treated the prism one obtains by exchanging the pairs a1

and a2, a4 and a6, and a7 and a8.
There are restrictions on the combinations of values taken by the labels ai which

correspond to the conditions given in Theorem 2.1. Specifically:

• Condition (1) of Theorem 2.1 means that all labels must be positive (i.e., not 0
or∞; we assume this of the ai ).

• Condition (2) states that at the five nonideal vertices, the three edges incident
to the vertex must have the labels of a spherical triangle, and we add here that
the three edges incident to the ideal vertex must have the labels of a Euclidean
triangle.

• Condition (3) states that labels a4, a5 and a6 must be the labels of a hyperbolic
triangle.

We disregard the other two conditions: condition (4) does not apply because the
prism has no prismatic 4-circuits, and any labeling of the prism which meets the
stated conditions will already meet condition (5). This is because all dihedral angles
in question are at most π2 , at most one of a4, a5 and a6 can be 2 (the others must
be larger) from condition 3, and at most one of a1 and a2 may be 2 from the ideal
vertex condition.

3A. [2, 3, 6]-cusp.

Lemma 3.1. There are eight infinite families and 32 specific configurations with
labels 2, 3, and 6 at the ideal vertex.

Proof. Here a1, a2 and a5 take the values 2, 3 and 6. We first note that a5 6= 2. This
is because whichever of a4 or a6 labels an edge which meets the edge labeled 6 must
take the value 2, and then a4, a5 and a6 are not the labels of a hyperbolic triangle.

Let a5 = 3. Then, by symmetry, without loss of generality we suppose a1 = 2
and a2 = 6. Then a3 = a6 = 2. Since a6 = 2 and a5 = 3, we must have a4 ≥ 7,
and thus that a7 = a9 = 2. The remaining label a8 may take the values 2, 3, 4 or 5.
Each of these four cases gives us one infinite family of labelings, indexed by n ≥ 7
which corresponds to the value of a4.
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2 6

2

7
3

2

2 3
2

Figure 5. The left quadrilateral face is green; the right is blue; and
the lower triangular face is red.

Now suppose a5 = 6, and without loss of generality a1 = 2 and a2 = 3. Since
a5 = 6, we must have a7 = a8 = 2. If a3 = 4 then we must have a6 = 2 and a4 ≤ 3,
in which case a4, a5 and a6 are not the labels of a hyperbolic triangle. A similar
argument applies if a3 > 4. If a3 = 3, then we must have a6 = 2, and then a4 must
be 4 or 5. In each of these two cases, a9 may be 2 or 3.

Finally, if again a5 = 6, a1 = 2, a2 = 3, and a7 = a8 = 2, it remains to consider
a3 = 2. If a6 = 2, then a4 could be 4 or 5 — in each case a9 is either 2 or 3 — or
a4 ≥ 6, in which case a9 = 2. If a6 = 3, then a4 could be 3, 4 or 5 — if a4 = 3, a9

is 2, 3, 4 or 5; if a4 is 4 or 5, a9 is 2 or 3 — or a4 ≥ 6, in which case a9 = 2. If
a6 = 4, then a4 could be 2, 3, 4 or 5 — in each case a9 is either 2 or 3 — or a4 ≥ 6,
in which case a9 = 2. If a6 = 5, then a4 could be 2, 3, 4 or 5 — in each case a9 is
either 2 or 3 — or a4 ≥ 6, in which case a9 = 2. �

We will compute explicitly the location of the prism in upper half-space for one
label arrangement, where a1 = 2, a2 = 6, and a5 = 3. Let a3 = 2, a4 = 7, a6 = 2,
a7 = 2, a8 = 3, and a9 = 2. This is shown in Figure 5.

The values for all the edges were specifically chosen to satisfy the definitions on
page 363. Using these definitions, we can examine different arrangements of the
Euclidean vertex with values of 2, 3, and 6.

We will refer to the left quadrilateral face, whose edges have labels a1, a4, a7

and a5, as the red face. The left quadrilateral face, with edges a2, a6, a9 and a5, will
be the blue face. The lower triangular face, with edges a1, a2 and a3, will be the
red face. These faces all meet at the ideal vertex, and hence correspond to vertical
lines in the horizontal plane.

Making the back quadrilateral face correspond to the unit circle, we choose the
red face to correspond to the line x = 0, which meets the unit circle at a right angle.
By Lemma 2.2, the green face is the line y = cos π7 , which meets the red face at
a right angle, and the unit circle at π7 . The blue face is the line y =

√
3x , which

meets the unit circle at a right angle and the red face at angle π
6 (see Figure 6).

It remains to find the last circle, corresponding to the top triangular face of the
prism. Suppose this circle has center (x, y) and radius r . This circle intersects the



HYPERBOLIC TRIANGULAR PRISMS WITH ONE IDEAL VERTEX 369

Figure 6. Three lines and the unit circle.

unit circle at an angle of π2 . Using the Pythagorean theorem to find an equation, we
have that the equation of this intersection is

1+ r2
= x2
+ y2. (1)

Since this circle meets the green line at a right angle, we see that the center must
be on the green line, and hence that

y = cos π7 . (2)

We need one more equation in x , y and r , and this comes from the fact that the last
circle meets the blue line at π3 . By Lemma 2.3,

y− r =
√

3x (3)
(see Figure 7).

These equations, subject to x > 0 and r > 0, are sufficient to determine x , y
and r , and thus to determine the location of the prism precisely. We find that as
well as y = cos π7 , we have

x = 1
4

(
2
√

3 cos π7 −
√

6 sin 3π
14 − 2

)
≈ 0.4504,

r = 1
4

(√
18 sin 3π

14 − 6− 2 cos π7
)
≈ 0.1209.

Figure 7. The point (x, y− r) lies on the blue line.
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Figure 8. The lines and circles define the hyperbolic planes bound-
ing the prism.

Now that we have found the equations of the three lines and two circles which
intersect at the prescribed angles, the hyperbolic prism we seek is the region inside
the triangle defined by the three straight lines, and exterior to the two spheres whose
equators are the given circles (see Figure 8).

Changing the value of a4 edge from 7 to 8, the equation of the green line changes
to y = cos π8 by Lemma 2.2. And the same thing happens changing it to equal 9.
This result shows that the line gets taller as the value of that side increases. That
edge can be left as a4 = m > 6.

3B. [2, 4, 4]-cusp.

Lemma 3.2. There are four infinite families and 24 specific configurations with
labels 2, 4, and 4 at the ideal vertex.

Proof. First, we note that if a5 = 2, then a1 = a2 = 4. Then a4 and a6 are both at
most 3, and then a4, a5 and a6 are not the labels of a hyperbolic triangle. Thus we
must have a5 = 4, and without loss of generality we will assume a1 = 2 and a4 = 4.

With these assumptions in place, we next note that a3 must be 2 or 3. Let us first
treat the case a3 = 3. In this case, we must have a6 = 2, and then a4 = 5, because
it forms a hyperbolic triangle with 2 and 4 and a spherical triangle with 2 and 3.
The possible labels for (a7, a8, a9) are then (2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3)
and (3, 2, 2).

Finally, suppose a1 = 2, a2 = 4, a3 = 2, and a5 = 4. Then a6 is either 2 or 3.
If a6 = 2, then a4 ≥ 5. If a4 = 5, then as above, the possible labels for (a7, a8, a9)

are (2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3) and (3, 2, 2). If a4 ≥ 6, then a7 = a9 = 2,
and a8 may be 2 or 3. If a6 = 3, then a4 ≥ 3. If a4 = 3, then the possible labels
for (a7, a8, a9) are (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, 5), (2, 3, 2) and (3, 2, 2). If
a4 = 4 or 5, then the possible labels for (a7, a8, a9) are (2, 2, 2), (2, 2, 3), (2, 3, 2)
and (3, 2, 2). If a4 ≥ 6, then a7 = a9 = 2, and a8 may be 2 or 3. �
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2 4

2

5
4

2

2 2
3

Figure 9. A [2, 4, 4]-cusp.

The first possibility of this arrangement we will work with is where a9 = 3,
a8 = 2, a7 = 2, a5 = 4, a4 ≥ 5, a6 = 2. This means a1 = 2, a2 = 4, and a3 = 2
(see Figure 9).

With the bottom vertex being 2, 4, 4, we have a
(
π
2 ,

π
4 ,

π
4

)
triangle, with blue, red

and green sides. The back face of the prism meets green at an angle of π
5 , and the

back face meets the blue and red faces at π2 . The back face corresponds to the unit cir-
cle. We choose the red face to correspond to the line x=0. By Lemma 2.2, the green
face corresponds to the line y = cos π5 . The blue line corresponds to the line y = x .

Finally, the top face meets blue and green at angle π
2 , and the unit circle at

angle π
3 . Meeting blue and green at π2 means the center of the last circle is on both

blue and green lines. Their intersection point is (x, y)=
(
cos π5 , cos π5

)
. Meeting

the unit circle at π3 means that, by Lemma 2.4, we have

x2
+ y2
= 12
+ r2
− 2

(
cos 2π

3

)
r

and so
x2
+ y2
= 1+ r2

+ r.

Here we find r = 1
2(

4
√

5− 1).
As we saw, with the [2, 4, 4]-cusp the edges a7, a8 and a9 are always labeled

2, 3 or 4, and they cannot all be labeled 3. We now describe what happens to the
equations defining x , y and r when these labels change, noting that the red, blue
and green faces, as well as the unit circle, are unaffected by these changes.

If we change a9 to be 2, keeping a7 = a8 = 2, this means that the top face
intersects the back face at π2 . The intersection between the last circle and the unit
circle creates an angle of π

2 . We still have x = y = cos π5 , and the third equation
becomes x2

+ y2
= 1+ r2.

If a9 is kept as a 2, and we change a8 to 3, then because the new circle meets
the green line at right angles, we still have y = cos π5 . Also, since a9 = 2, the new
circle meets the unit circle at right angles, and so x2

+ y2
= 1+ r2. By Lemma 2.3,

the final equation in this case is

y = x +
√

2
2 r.
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The next arrangement we consider has a7 = a8 = a9 = 2, the vertical edges
satisfy a4 ≥ 5, a5 = 4 and a6 = 2, and the bottom edges are a1 = 2, a2 = 4, and
a3 = 3. This change shifts the red face from intersecting the unit circle at x = 0
to x = −1

2 . The green line will be y = cos (π/a4), and the blue will be y = x .
Since a7 = a8 = 2, the center of the second circle is at the intersection of the blue
and green lines. Letting a9 = 2 results in the final equation of the last circle being
1+ r2

= x2
+ y2.

Lastly, keeping a3 = 3
(
so the red line is still x =− 1

2

)
, we change a6 to 3. By

Lemma 2.2, this shifts the blue line downward from y = x to y = x −
√

2
2 . The

equations defining x, y and r here are y = cos (π/a4), y = x −
√

2
2 and x2

+ y2
=

1+ r2.

3C. [3, 3, 3]-cusp.

Lemma 3.3. There are no infinite familes and 22 specific configurations with labels
3, 3, and 3 at the ideal vertex.

Proof. In studying labelings here, we note that this labeling at the Euclidean vertex
is symmetric, and thus we will discard some labelings as being symmetric to other
labelings already listed.

We first note that if a3 > 2, then a4 = a6 = 2 and we do not have a hyperbolic
triangle. So a3 = 2. Then by spherical triangles, a4 and a6 must both be one of
2, 3, 4 or 5, but neither can be 2 because of the hyperbolic triangle, and also they
cannot both be 3. Because of symmetry considerations, we suppose without loss of
generality that a4 ≤ a6:

• If a4 = 3 and a6 = 4, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3), (2, 3, 2),
(3, 2, 2), (4, 2, 2) or (5, 2, 2).

• If a4 = 3 and a6 = 5, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3), (2, 3, 2),
(3, 2, 2), (4, 2, 2) or (5, 2, 2).

• If a4 = 4 and a6 = 4, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3) or (2, 3, 2)
(we discard (3, 2, 2) as it is symmetric to (2, 3, 2)).

• If a4 = 4 and a6 = 5, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3), (2, 3, 2) or
(3, 2, 2).

• If a4 = 5 and a6 = 5, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3) or (2, 3, 2)
(we discard (3, 2, 2) as it is symmetric to (2, 3, 2)). �

The arrangement we examine is

[a1, a2, a3, a4, a5, a6, a7, a8, a9, ] = [3, 3, 2, 3, 3, 4, 2, 2, 2].

As before, we will let the back side of the prism be the unit circle. Since all of the
admissible labelings here have a3 = 2, we will fix the red line to be x = 0.
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a4, a5, a6 green line blue line

3, 3, 4 y =−
√

3
3 x +

√
3

3 y =
√

3
3 x −

√
6

3

3, 3, 5 y =−
√

3
3 x +

√
3

3 y =
√

3
3 x − 2

√
3

3 cos π5
4, 3, 4 y =−

√
3

3 x +
√

6
3 y =

√
3

3 x −
√

6
3

4, 3, 5 y =−
√

3
3 x +

√
6

3 y =
√

3
3 x − 2

√
3

3 cos π5
5, 3, 5 y =−

√
3

3 x + 2
√

3
3 cos π5 y =

√
3

3 x − 2
√

3
3 cos π5

Table 1

Since the blue side meets the back side at π
4 , the blue line intersects the unit

circle at π4 . The green side meets the back side at π3 , and the red side meets the back
side at π2 . This means that the red side creates a line that passes through the center
of the unit circle at angle π

2 . The red, green, and blue lines create an equilateral
triangle since their sides meet each other at π3 .

If we shift the green line so that it passes through the center of the unit circle,
we can find the slope of the blue line. Since this line creates an angle of π

3 , in the
fourth quadrant, there is a remaining π

6 in order to make a right angle. Thus the
slope of the blue line is

tan π
6 =

sin π
6

cos π6
=
−

1
2
√

3
2

=−

√
3

3
.

The slope −
√

3
3 corresponds to the vector

〈
1,−

√
3

3

〉
. The vector 〈1,

√
3〉 is orthog-

onal to this vector, and its corresponding unit vector is
〈1

2 ,
√

3
2

〉
. Using Lemma 2.2,

we multiply the unit vector by cos π3 to get the point
(1

4 ,
√

3
4

)
. Thus we get the line

y =
(
−

√
3

3

)
x +

√
3

3 .
The slope of the blue line is

√
3

3 . The vector corresponding to this slope is〈
1,−
√

3
〉

and the unit vector is
〈 1

2 ,−
√

3
2

〉
. We multiply the unit vector by cos π4 to

find the point
(√2

4 ,−
√

6
4

)
. Thus we get the line y =

(√3
3

)
x −

√
6

3 .
Since a7 = a8 = a9 = 2, the last circle intersects the unit circle at right angles.

This also means that the center of this last circle lies on the intersection of the green
and blue lines. Since the last circle intersects the unit circle at right angles, we use
the Pythagorean theorem to find that the last equation is 1+ r2

= x2
+ y2.

Table 1 lists the equations of these arrangements, where we adjust the values of
a4 and a6.

As long as a7 = a8 = a9 = 2, the third equation defining the last circle that
intersects the unit circle does not change for all of these specific arrangements.
Thus, for all of these arrangements, the equation of the last circle is 1+r2

= x2
+ y2.

When we change a9 to 3, the equation of the last circle for the arrangements listed
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above is x2
+y2
= 1+r2

+r . When a7 or a8 change, the equations change according
to Lemmas 2.3 and 2.4.

4. Matrices

We describe a general method which produces lines and circles which intersect at
the prescribed angles, which produces the same results described in the previous
section. We then show how to take this geometric data of the lines and circles
and use it to produce matrix generators in PSL2(C) for the orientation-preserving
subgroup of the group generated by reflections in the faces of the corresponding
prism. Each group will be generated by four matrices, where each matrix acts by
pairing two faces of the polyhedron one obtains by doubling the prism across one
face.

We note at this point that this method also works for examples of prisms which
have more than one ideal vertex, that is, where one or more of the five vertices not
located at∞ in the upper half-space is found in the complex plane. In this paper,
we restrict to the case of prisms with one cusp, but the method we describe should
work for some, if not all, labelings of the prism which correspond to prisms with
more than one cusp.

4A. The case a3 = 2. As above, we suppose that the back quadrilateral face lies
on the unit sphere, or equivalently that one of the two circles is the unit circle. We
further suppose that the red face lies above the imaginary axis, or equivalently that
one of the straight lines is x = 0; this corresponds to asking that a3 = 2. Lastly,
we assume that the polyhedron lies to the right of the imaginary axis as we view it
from above; in other words, we assume that it lies in the region of H3 with x ≥ 0.

By considering Figure 1 and applying Lemma 2.2, we see that the blue line has
equation

y = cot
(
π

a2

)
x −

cos (π/a6)

sin (π/a2)

and, by similar reasoning, the green line has equation

y =− cot
(
π

a1

)
x +

cos (π/a4)

sin (π/a1)
.

The final face is on a circle with center (x, y) and radius r , which meets the blue
line at angle π/a8. By Lemma 2.3 we have one equation

y−
r cos (π/a8)√
cot2 (π/a2)+ 1

= cot
(
π

a2

)(
x +

r cot (π/a2) cos (π/a8)√
cot2 (π/a2)+ 1

)
−

cos (π/a6)

sin (π/a2)
,
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which simplifies to

y− r cos
(
π

a8

)
sin
(
π

a2

)
= cot

(
π

a2

)(
x + r cos

(
π

a2

)
cos

(
π

a8

))
−

cos (π/a6)

sin (π/a2)
. (4)

By applying Lemma 2.3, with appropriate modifications, to the green line, we also
have the equation

y+ r sin
(
π

a1

)
cos

(
π

a7

)
=− cot

(
π

a1

)(
x + r cos

(
π

a1

)
cos

(
π

a7

))
+

cos (π/a4)

sin (π/a1)
. (5)

Finally, the two circles intersecting at angle π/a9 yield, via the cosine law and
Lemma 2.4, the equation

x2
+ y2
= 12
+ r2
− 2(1)(r) cos

(
π −

π

a9

)
or

x2
+ y2
= 12
+ r2
+ 2r cos

(
π

a9

)
. (6)

Equations (4), (5) and (6) together define x, y and r and determine the final circle
required.

With all of this work in mind, we require seven quantities to write down the
matrices we seek. These quantities are y1 = cos (π/a4)/ sin (π/a1) and y2 =

− cos (π/a6)/ sin (π/a2), the y-intercepts of the green and blue lines, the angles
θ1 = π/a1 and θ2 = π/a2 of the ideal triangle at these points, and the center (x, y)
and radius r of the second circle. Given these quantities, the matrices are

M1 =

(
0 −1
1 0

)
,

which pairs two sides which both lie on the unit sphere,

M2 =

(
e−iθ1 y1i(eiθ1−e−iθ1)

0 eiθ1

)
,

which rotates counterclockwise by angle 2θ1 about (0, y1),

M3 =

(
eiθ2 y2i(e−iθ2−eiθ2)

0 e−iθ2

)
,
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which rotates clockwise by angle 2θ2 about (0, y2), and

M4 =

(1
r (−x+yi) 1

r (x
2
+y2)−r

1
r

1
r (−x−yi)

)
,

which sends the second circle to its reflection in the imaginary axis. These matrices
satisfy the relations

Ma1
2 = 1, Ma2

3 = 1, Ma3
1 = M2

1 = 1,

(M−1
2 M1)

a4 = 1, (M−1
3 M2)

a5 = 1, (M−1
3 M1)

a6 = 1,

(M−1
4 M2)

a7 = 1, (M−1
4 M3)

a8 = 1, (M−1
4 M1)

a9 = 1.

4B. The case a3 = 3. In the case that a3 6= 2, we saw that a3 = 3. In this case, we
keep the back face as corresponding to the unit circle, and move the red line to
x =−1

2 so that it intersects the unit circle at angle π
3 . The equations of the green

and blue lines will be the same as in the case a3 = 2, and the second circle will be
defined by the same three equations (4), (5) and (6). As in the previous case, we
define θ1 = π/a1 and θ2 = π/a2, and let (x, y) and r be the center and radius of
the second circle. In place of y1 and y2 we define

z1 =−
1
2 +

(
cos (π/a4)

sin (π/a1)
+

cot (π/a1)

2

)
i,

z2 =−
1
2 +

(
cos (π/a6)

sin (π/a2)
−

cot (π/a2)

2

)
i,

the points where the green and blue lines meet the red line x =−1
2 . Our matrices

are then

M1 =

(
−1 −1

1 0

)
,

which pairs two sides which lie on the unit sphere and the unit sphere centered at
(−1, 0),

M2 =

(
e−iθ1 z1(eiθ1−e−iθ1)

0 eiθ1

)
,

which rotates counterclockwise by angle 2θ1 about z1,

M3 =

(
eiθ2 z2(e−iθ2−eiθ2)

0 e−iθ2

)
,

which rotates clockwise by angle 2θ2 about z2, and

M4 =

(1
r (−(x+1)+yi) 1

r (−(x+1)+yi)(−x−yi)−r
1
r

1
r (−x−yi)

)
,
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which sends the second circle to its reflection in the line x =− 1
2 . These matrices

satisfy the relations

Ma1
2 = 1, Ma2

3 = 1, Ma3
1 = M3

1 = 1,

(M−1
2 M1)

a4 = 1, (M−1
3 M2)

a5 = 1, (M−1
3 M1)

a6 = 1,

(M−1
4 M2)

a7 = 1, (M−1
4 M3)

a8 = 1, (M−1
4 M1)

a9 = 1.

5. Results

We now list all of the possible labelings of the prism that were described in Section 3.
We note that the twelve infinite families, where one label may vary, are written in
bold to distinguish them.

5A. [2, 3, 6]-cusp.

5A1. a3 = 3.

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 3 3 4 6 2 2 2 2
2 3 3 4 6 2 2 2 3
2 3 3 5 6 2 2 2 2
2 3 3 5 6 2 2 2 3

5A2. a3 = 2.

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 6 2 n≥7 3 2 2 2 2
2 6 2 n≥7 3 2 2 3 2
2 6 2 n≥7 3 2 2 4 2
2 6 2 n≥7 3 2 2 5 2
2 3 2 4 6 2 2 2 2
2 3 2 4 6 2 2 2 3
2 3 2 5 6 2 2 2 2
2 3 2 5 6 2 2 2 3
2 3 2 n≥6 6 2 2 2 2
2 3 2 3 6 3 2 2 2
2 3 2 3 6 3 2 2 3
2 3 2 3 6 3 2 2 4
2 3 2 3 6 3 2 2 5
2 3 2 4 6 3 2 2 2
2 3 2 4 6 3 2 2 3
2 3 2 5 6 3 2 2 2
2 3 2 5 6 3 2 2 3
2 3 2 n≥6 6 3 2 2 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 3 2 2 6 4 2 2 2
2 3 2 2 6 4 2 2 3
2 3 2 3 6 4 2 2 2
2 3 2 3 6 4 2 2 3
2 3 2 4 6 4 2 2 2
2 3 2 4 6 4 2 2 3
2 3 2 5 6 4 2 2 2
2 3 2 5 6 4 2 2 3
2 3 2 n≥6 6 4 2 2 2
2 3 2 2 6 5 2 2 2
2 3 2 2 6 5 2 2 3
2 3 2 3 6 5 2 2 2
2 3 2 3 6 5 2 2 3
2 3 2 4 6 5 2 2 2
2 3 2 4 6 5 2 2 3
2 3 2 5 6 5 2 2 2
2 3 2 5 6 5 2 2 3
2 3 2 n≥6 6 5 2 2 2
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5B. [2, 4, 4]-cusp.

5B1. a3 = 3.

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 4 3 5 4 2 2 2 2
2 4 3 5 4 2 2 2 3
2 4 3 5 4 2 2 3 2
2 4 3 5 4 2 2 3 3
2 4 3 5 4 2 3 2 2

5B2. a3 = 2.

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 4 2 5 4 2 2 2 2
2 4 2 5 4 2 2 2 3
2 4 2 5 4 2 2 3 2
2 4 2 5 4 2 2 3 3
2 4 2 5 4 2 3 2 2
2 4 2 n≥6 4 2 2 2 2
2 4 2 n≥6 4 2 2 3 2
2 4 2 3 4 3 2 2 2
2 4 2 3 4 3 2 2 3
2 4 2 3 4 3 2 2 4
2 4 2 3 4 3 2 2 5
2 4 2 3 4 3 2 3 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 4 2 3 4 3 3 2 2
2 4 2 4 4 3 2 2 2
2 4 2 4 4 3 2 2 3
2 4 2 4 4 3 2 3 2
2 4 2 4 4 3 3 2 2
2 4 2 5 4 3 2 2 2
2 4 2 5 4 3 2 2 3
2 4 2 5 4 3 2 3 2
2 4 2 5 4 3 3 2 2
2 4 2 n≥6 4 3 2 2 2
2 4 2 n≥6 4 3 2 3 2

5C. [3, 3, 3]-cusp.

a1 a2 a3 a4 a5 a6 a7 a8 a9

3 3 2 3 3 4 2 2 2
3 3 2 3 3 4 2 2 3
3 3 2 3 3 4 2 3 2
3 3 2 3 3 4 3 2 2
3 3 2 3 3 4 4 2 2
3 3 2 3 3 4 5 2 2
3 3 2 3 3 5 2 2 2
3 3 2 3 3 5 2 2 3
3 3 2 3 3 5 2 3 2
3 3 2 3 3 5 3 2 2
3 3 2 3 3 5 4 2 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

3 3 2 3 3 5 5 2 2
3 3 2 4 3 4 2 2 2
3 3 2 4 3 4 2 2 3
3 3 2 4 3 4 2 3 2
3 3 2 4 3 5 2 2 2
3 3 2 4 3 5 2 2 3
3 3 2 4 3 5 2 3 2
3 3 2 4 3 5 3 2 2
3 3 2 5 3 5 2 2 2
3 3 2 5 3 5 2 2 3
3 3 2 5 3 5 2 3 2
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