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A sandpile configuration is a representation of the current layout of theoretical
sand on a graph in which every vertex is assigned a nonnegative integer value.
The Abelian sandpile group is a finite group composed of the recurrent sandpile
configurations of a graph. We investigate the sandpile group of graphs constructed
using the composition rules of series-parallel graphs, and determine the sandpile
groups of parallel compositions of path-graphs.

1. Introduction

The Abelian sandpile model was originally introduced as a simple example of
self-organized criticality [Bak et al. 1988]. The model was later generalized into a
form that can be expressed in terms of a rooted graph [Dhar et al. 1995]. On such
a graph, nonnegative integers are assigned to each vertex to represent the current
configuration of sand. Toppling happens when a vertex with an amount of sand that
is at least its degree transfers one grain of sand to each of its neighboring vertices.
The root (also called the sink in this context) is the only vertex that is not allowed
to topple. The sink acts as an outlet for sand to escape the system. As a result, the
amount of sand on the sink is inconsequential and therefore not included in the
configuration of a graph. A configuration with no toppleable vertices is said to be
stable. Two configurations can be added by adding the sandpiles on corresponding
vertices and then toppling until stable. A configuration is recurrent if it is stable and
can be reached from any starting configuration by adding some other configuration.
The set of recurrent configurations makes up a finite Abelian group known as the
sandpile group. The order of the sandpile group is equal to the number of spanning
trees of the graph [Dhar et al. 1995]. The recently published book [Corry and
Perkinson 2018, Chapters 6-9] provides a comprehensive introduction to all of
these ideas, and much more.
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Previous works have classified the sandpile groups of several families of graphs
[Cori and Rossin 2000; Hou et al. 2006; Levine 2009; Shen and Hou 2008;
Toumpakari 2007]. Furthermore, the sandpile groups of the Cartesian products of
many types of graphs have also been identified [Hou et al. 2008; Jacobson et al.
2003; Liang et al. 2008]. A better understanding of how graph compositions affect
sandpile groups may allow for the classification of sandpile groups on more complex
graphs. The growing catalog of classified sandpile groups can be used to view
complicated graphs as the composition of graphs with known sandpile groups. In
this spirit, we investigate the sandpile group of series-parallel graphs constructed
from graphs with known groups.

This paper is organized as follows. In Section 2 we provide necessary background
information. In Section 3 we prove the general form of series compositions involving
an Eulerian graph. We present this known result (it appears as an exercise in [Corry
and Perkinson 2018]) in order to prepare the reader for the new result on parallel
compositions of paths in Section 4. We demonstrate a significant reduction that
lends itself to several corollaries. In Section 5 we find the sandpile group of an
example series-parallel graph and offer concluding remarks.

2. Background

On a directed graph, the number of edges leaving a vertex is called the outdegree.
Similarly, the number of edges entering a vertex is called the indegree. A graph
is said to be Eulerian if the outdegree of every vertex is equal to its indegree. A
graph with v vertices can be represented by a v X v matrix known as the Laplacian
matrix, L. The Laplacian of a graph is defined by

L. — outdegree of vertex i ifi =,
"/ | —(number of edges directed from j to i) ifi # j.

Column j of the Laplacian then reflects the result of toppling vertex j. Specifically,
vertex j loses grains of sand equal to its outdegree (represented by the positive
number on the diagonal), and each vertex connected to j gains grains of sand equal
to the number of edges coming from vertex j (represented by the corresponding
off-diagonal entries). The reduced Laplacian is obtained by removing the row and
column that corresponds to the sink of the full Laplacian. The choice of sink does
not impact the sandpile group of an Eulerian graph [Cori and Rossin 2000]. For
such graphs, the reduced Laplacian can be created by removing any corresponding
column and row.

The Laplacian of a graph determines its sandpile group in the following manner.
We can define an equivalence relation on the additive group Z" by declaring two
configurations (now allowing negative as well as nonnegative integers) equivalent if
one can be reached from the other by a sequence of toppling (or untoppling) moves.
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Each equivalence class has a unique representative that is a recurrent configuration.
(This nontrivial result is proven in several sources, including [Cori and Rossin 2000;
Corry and Perkinson 2018].) The columns of the Laplacian are a complete set of
relations using the standard basis vectors as a generating set of the group. In other
words, the Laplacian is a presentation matrix for a finitely generated Abelian group.
The torsion subgroup of this group is the sandpile group.

In order to identify the sandpile group, we can manipulate the presentation matrix
of a group by using the following elementary row and columns operations [Dummit
and Foote 2004]:

(1) Add an integer multiple of one row or column to another. This changes the
generating set of the group and the corresponding relations.

(2) Multiply a row or column by —1. This replaces the generator with its inverse.
(3) Delete a column of zeros. This eliminates a trivial relation.

(4) Delete a row and a column that form the standard basis vector. This eliminates
a redundant generator.

(5) Swapping corresponding rows and columns. This reorders the generators and
adjusts the relations accordingly.

These operations do not change the group represented. If a matrix A can be
changed into a matrix B by use of these operations, we will say that A is Z-
equivalent to B and we will write A = B. Note that operations (1), (2), and (5) can
be accomplished by left or right multiplication by an invertible matrix.

Every integer matrix has a unique Smith normal form, arrived at using the row
and column operations above. The Smith normal form is defined as the diagonal
matrix Z-equivalent to the original in which every entry is divisible by the previous
entries. For every matrix M with integer entries, there exist invertible matrices P
and Q such that PM Q is in Smith normal form. The Smith normal form of the
matrix can be written as an (n +m) X (n + m) matrix

ai,i

in which a; ; divides a;11 ;+1. This matrix represents the group

n
(@ za,.,,) ®I".
i=1
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We arrive at the sandpile group by discarding the infinite summands and keeping
the finite Abelian group that remains (the torsion subgroup). A common technique
used to determine the sandpile group of a family of graphs is to show that the
Laplacian matrix (or reduced Laplacian) for graphs in the family is equivalent to a
predictable Smith normal form.

This paper focuses on the sandpile groups of graphs constructed using the
composition rules of series-parallel graphs. A series composition of two graphs,
G and G», is formed by taking a vertex x € G| and a vertex y € G, and merging
x with y to produce the vertex z, while all other existing vertices and connections
remain unchanged:

A=K

Similarly, a parallel composition of two graphs, G| and G», is formed by taking
the vertices a, x € G| and b, y € G,, merging a with b to produce the vertex c,
and merging x with y to produce the vertex z, while all other existing vertices and
connections remain unchanged:

& k-4

3. Series compositions

Theorem 3.1. Let G| and G, be Eulerian graphs with the sandpile groups SG
and SG,, respectively. A series composition of G| and G, will have a sandpile
group of the form SG| ® SG».

Proof. Let G| and G, be Eulerian graphs with the respective sandpile groups SG
and SG,. The Laplacian of a series composition of G| and G, will be composed of
the values a; ;, which come from the Laplacian of G, listing the vertex to merge
last, and the values b; ;j, which come from the Laplacian of G, listing the vertex
to merge first. The merged vertex has outdegree a, , + b1,1 and connections to G
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and G, preserved. Therefore, the Laplacian is of the form

a - ain
an ++ Anutbiy oo+ bim
bm,l e bm,m

We will now use the elementary row operations defined in Section 2 to show
this Laplacian is Z-equivalent to a useful diagonal matrix. Since G| and G, are
both Eulerian graphs, the series composition of these graphs will also be Eulerian.
Therefore, we can let the sink be represented by the n-th row and column of the
full Laplacian. As a result, the reduced Laplacian will have the form

air - din-1

ap—1,1 *+* Qap—1,n—1 A‘
R

Let P; and Q; be the invertible matrices that put A in Smith normal form.
Similarly, let P, and Q> be the invertible matrices that put B in Smith normal form.

Then [plpj.[ABHQlQJ

would produce the matrix

A
‘ fn—l

81

Em—1

where the values f1, ..., f,—1 and g1, ..., gn—1 are the nonzero entries of the Smith
normal form of the Laplacian of G| and G, respectively. This matrix presents

n—1 m—1
(EB fi) ) (@gj) =5G @ SG,.
i=1 =1

Since the reduced Laplacian of a series composition of the Eulerian graphs is
Z-equivalent to a diagonal matrix with the nonzero entries of the Smith normal
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forms of G| and G, as values, the sandpile group of a series composition of G
and G, 1s SG1 @ SG». |

Corollary 3.2. The sandpile group of any series combination of two Eulerian
graphs, G| and G, will be of the form SG| @ SG,, independent of which vertices
are merged.

Proof. The choice of vertices to merge simply rearranges the rows and columns using
the fifth elementary operation in order to list the merged vertices in an overlapping
row. The sandpile groups of G| and G, are unique, independent of the order in
which the vertices are listed and independent of the vertices chosen as the sinks
[Cori and Rossin 2000]. The sandpile group of the series composition of graphs
will be SG| & SG», no matter which vertices are merged. O

4. Parallel composition of paths

We now focus on a family of undirected multigraphs made of the parallel compo-
sition of & paths of length 1 and n paths of the varying lengths f, ..., f,, where
fi = 2. Graphs in this family have the following form:

We define a partitioned matrix that represents the general Laplacian of graphs in
this family as follows. The top row of the Laplacian will correspond to the vertex ¢
and it will have the form

[n4+h Dy .- D, —h],

where each D; is a 1 x (f; — 1) matrix of the form D; = [—1 0--- 0]. The first
entry of this row corresponds to the degree of ¢, which is the sum of the number of
paths of length 1 and the number of paths of length 2 or greater. Each D; matrix
corresponds to the path f;, with its vertices listed from top to bottom. We see that
c is only connected to the first vertex of each path. The last entry of the top row of
the Laplacian corresponds to the 4 paths of length 1 connecting the vertices ¢ and z.
The Laplacian of an undirected graph is symmetric. Therefore, the first column
will be the transpose of the first row.

The bottom row of the Laplacian will correspond to vertex z and have the form

[-h Cy -+ Cy n+h],
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where each C; is a 1 x (f; — 1) matrix of the form C; = [O - 0 —1]. The first
entry reflects the /2 connections from z to ¢, while the last represents the total degree
of n 4+ h. Each C; corresponds to the path f; and shows that z is only connected to
the last vertex in this path. The last column of the Laplacian will be the transpose
of the bottom row.

The vertices of the path f; (excluding ¢ and z, accounted for above) correspond
to a diagonal block in the Laplacian, B;. When f; > 2, B;isan (fi — 1) x (fi — 1)
matrix of the form

2 -1

B; = - .2

Here we see that each vertex in the path has degree 2 and is connected to the vertices
immediately before and after it. When f; =2, B; is the 1 x 1 matrix with entry 2,
and the corresponding matrices D; and C; are 1 x 1 matrices consisting of entry —1.
Putting this all together we see that the full Laplacian of the parallel composition

of h paths of length 1 and n paths of the varying lengths f1, ..., f,, where f; > 2,
is of form
[ n+h|Dy|--- | D, | —h ]
D! | B C/
D; B, | Cyp
| —h | Cy |-+ | Cy | nth

The empty partitions are zero matrices that reflect the fact that vertices from
distinct paths f; do not connect to each other. Now that we have the Laplacian
for this graph of parallel paths, we can use the row operations from Section 2
to simplify it as much as possible. Since the graph is undirected (and therefore
Eulerian), we can let the first row and column represent the sink. The resulting
reduced Laplacian will be of the form

B, c/
B,| C!
Ci|-- |Cy|nt+h

The following lemma will allow us to further reduce this matrix.
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Lemma 4.1. An m x m matrix F,,, where m > 2, of the form
2 —1
-1 2
-1 2

m —1
o=l oty )
Proof. We start by considering cases with small m. When m =2,
2 —1 2 -1
F2= [—1 2} - [—(2—1) 2} ’

which is in the desired form.
When m = 3, we have the matrix

Fp=

satisfies

2 -1 0
F=(-1 2 -1
0-1 2

We create the standard basis vector in the first row and column by adding the second
column to the first, and then adding the first column to the second. The top row
will now have 1 as the first entry and zeros everywhere else. Next, we use the first
row to eliminate the entries in the rest of the first column:

2 -1 0 1 -1 O 1 0 O 1 0 O
-1 2 -1|= 1 2 -1|= 1 3—-1|=|0 3 —1
0-1 2 -1 -1 2 -1 -2 2 0-2 2

We now use the fourth elementary operation to remove the first row and column,

and see the desired form
3 -1] 3 -1
-2 2|1 |-6-1) 2}

The m = 3 example shows the basic process that we can iterate. If we start with
a matrix of the form

k-1
—(k—1) 2 -1

1 2 - ,
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we can add (k — 1) times the second column to the first column, and then add the
first column to the second column to get

1 0 0
k=1  k+1 —1
—(k=1) —k 2 -1
-1 2"
1
- _1 2_

Now use the first row to eliminate the rest of the entries in the first column, and we
can use the fourth elementary operation to remove the first row and column. The
result is a matrix of the same form, one dimension smaller, with k increased by 1:

[ k+1 —1
-k 2 -1
-1 2
o
-1 2

Starting with F,, we iterate this process m — 2 times and the result is

m —1
—(m-1) 2| O

We will apply Lemma 4.1 to reduce the blocks B; in the Laplacian, which leads
to the following significant reduction in size. We initially deal with the case where
there are three or more longer paths, and address the cases with fewer long paths
separately.

Theorem 4.2. The reduced Laplacian of an undirected graph made of the parallel
composition of h paths of length 1 and n paths of the varying lengths f1, ..., fu,
where f; > 2 and n > 3, is Z-equivalent to the form

/3 —fi

fn _fl
fr o it fath(fi12)
Proof. Recall that the reduced Laplacian of graphs in this family has the form

B C/
B,| Ci
C Cy | n+h
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We begin by treating paths of length 3 or greater separately from paths of length 2.
Sorting the paths by length from shortest to longest gives the matrix

2 -1
2 -1
B,, Ch |,
B,| C}
| —1| | =1|Cn |- | Ca|nth

where f,, through f, are all greater than 2.

We now utilize Lemma 4.1 to condense all paths with length greater than 2 (paths
fm through f,,). We can do this because none of the row and column operations
used in Lemma 4.1 involve the last row or column of the block. The entries
in the corresponding rows and columns outside of the block B; are all zero and
unaffected by the operations in Lemma 4.1. We now see that the reduced Laplacian
is Z-equivalent to the matrix

-2 -1 7]

_fm_l -1 0
—(fm=2) 2 -1

—fi—1 —1| 0
—(/n=2) 2| -1
—1|-[=1] -0 —1].-- 0 —1| nth

We can further condense each 2 x 2 block along the diagonal using row and
column operations similar to those used to prove Lemma 4.1. Corresponding to
each 2 x 2 block we add (f; — 2) times the second column to the first column. Next,
we add the first column to the second column. Every corresponding diagonal block
now has a top row with 1 as the first entry and zero everywhere else. We can utilize
this to eliminate all other values of each section’s first column. The first row and
column of each section are now in the form of the standard basis vector and can
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therefore be eliminated. The resulting matrix is of the form
h -1

fn _i
—(fi=1) - —(fu=D) n+h

The paths of length 2 also fit into this form since such paths are represented by a
diagonal value of 2 and —1 as the bottom entry. Next, we add (f; — 1) times the
rightmost column to the leftmost column to put the matrix in the form

1 —1]
—(fi—1 2 -1
—(fi—=1) fu -1

| (n+h=D)(fi=1) —(f2—=1) -+ =(fu—1) n+h ]

From here we can add the leftmost column to the rightmost column. As a result,
the top row has a first entry of 1 and zeros everywhere else. Therefore, all the rest
of the entries of the leftmost column can be made into zero using row operations.
Note the first row and column form the standard basis vector and can therefore be
eliminated. The matrix is now of the form

f2 —fi

fn _fl
—(o=D - =(fu—D (m+h) fi—fi+]

Adding the bottom row to the top row produces the matrix

1 —(f5=1) -+ =(fu=1) (n+h) fi=2f1+1
J3 -

fn _fl
(=) —(A=D) - —(fa=D) (4R fi—fit]

We can now add (f> — 1) times the top row to the bottom row. The first column
will have 1 as its first entry and zeros everywhere else. Utilizing this, we can make
the top row into the form of the standard basis vector. This allows us to once again
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eliminate the top row and first column. The matrix is now in the form
3 —fi
fn _fl
—fafstfa o =Rt fo iFh=2)(fif)+fit )2

Notice that this is an (n — 1) x (n — 1) matrix. We can add the first n — 2 rows
multiplied by f; to the bottom row, which results in

3 -fi
S -fi
fa o 2 it fath(f112) O

Theorem 4.2 is useful in computing the sandpile group of specific graphs, as
it dramatically reduces the size of the Laplacian used to compute the group. This
theorem can also be used to classify the sandpile group of a family of graphs, as
the following corollaries show.

Corollary 4.3. The sandpile group of the parallel composition of n paths, where
n > 3, with length a, where a > 2, is of the form

n—2
(@ za) ®Zan-
i=1

Proof. Since all paths are of length a and a > 2 we know by Theorem 4.2 that the
reduced Laplacian is Z-equivalent to the (n — 1) x (rn — 1) matrix

a —a
a —a
a --- a 2a

Adding the first n — 2 columns to the rightmost column, and then adding —1 times
the first n — 2 rows to the bottom row produces

a

This presents the group
n—2

(EBZa) & Zan. O

i=1
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Corollary 4.4. The sandpile group of the parallel composition of n — 1 paths, where
n > 3, with length a and one path of length b, where a, b > 2, is of the form

n—3

<@ Za) ® Zged(a.b) B L (24 (n—1)ab)/ ged(a,b)-

i=1

Proof. Since a, b > 2 we know by Theorem 4.2 that the reduced Laplacian is
Z-equivalent to the (n — 1) x (n — 1) matrix

a —a
a —a

b —a

a --- aa 2a

Adding the first n — 3 columns to the rightmost column, and then adding —1 times
the first n — 3 rows to the bottom row produces

a

b —a
a a(n—l)_

We can use row operations to perform the extended Euclidean algorithm on the
b and a entries of the last two rows, replacing them with gcd(a, b) and zero. To
see how this works, consider the case where a < b. The first step of the Euclidean
algorithm asks us to divide b by a,

b=aq +r,

and replace b with the remainder ri. We achieve this in the matrix by multiplying
the last row by —¢g; and adding to the penultimate row. The second step of the
Euclidean algorithm asks us to divide a by the remainder ry,

a=riqy+ry,

and replace a with the remainder r,. We multiply the penultimate row by —g, and
add to the last row. This process continues until one remainder evenly divides the
previous. At this point the last nonzero remainder is gcd(a, ), and the other entry
is zero. If needed we can switch the last two rows to ensure gcd(a, b) is on the
diagonal. The entries in the last column started as multiples of a, and are now linear
combinations of multiples of a. We write them as a - j and a - k, where j and k are
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some integers. This yields a matrix of the form

a

ged(a,b) a-j
0 a-k

Of course gcd(a, b) divides any multiple of a; therefore we can simplify this
expression to
a

gcd(a, b)
a-k

This presents the group

n—3

(@ Za) & chd(a,b) ©® Zak-
i=1

Recall from Section 1 that the order of a sandpile group is the number of spanning
trees on its graph [Dhar et al. 1995]. The number of spanning trees in this family
of graphs can be found by counting the number of ways to remove an edge from all
paths except one. If we leave the path of length b intact, we would need to remove an
edge from the n — 1 paths of length a. There are a"~! ways of doing this. Similarly,
we can choose a path of length a to keep intact and remove an edge from the rest
of the paths. There are a"~2b(n — 1) ways to do this, making the total number of
spanning trees a” ! 4+a"~2b(n — 1). Another way of finding the order of the group
is to take the product of the components. For this group this is a”" > x ged(a, b) x ak.
Setting these values equal to each other and solving for k yields

_a+ b(n—1)
o gcd(a, b)
Therefore, the group is
n—3
(@ Za) ® Zgcd(a.b) D Z(a2+abn—1))/ ged(a,b)- g

i=1
We now offer the sandpile groups of undirected graphs made of the parallel

composition of & paths of length 1 and n paths, where n =0, 1, 2, of the varying
lengths f1, ..., f,, where f; > 2.

Theorem 4.5. The sandpile group of the parallel composition of h paths with
length 1 is of the form
Zy.



ON THE SANDPILE GROUP OF EULERIAN SERIES-PARALLEL GRAPHS 395

Proof. The Laplacian of this family of graphs is of the form

)

The reduced Laplacian is a 1 x 1 matrix with £ as the only entry, representing the
group
Zp. O

Theorem 4.6. The sandpile group of the parallel composition of h paths with
length 1 and one path with length f1, where fi > 2, is of the form

Lpfi41-

Proof. We will proceed by using a method similar to the one used to prove
Lemma 4.1. The Laplacian of this family of graphs has the form

h+1|D;| —h
Dl | B | C|
—h | Cy | h+1

Since the graphs in this family are Eulerian, the choice of sink does not affect the
sandpile group. For simplicity’s sake, we let the first row and column correspond
to the sink. The resulting reduced Laplacian will be of the form

B | C

Ci|h+l|
Lemma 4.1 does not require adding the last column (or row) to any other column
(or row). Therefore, we can utilize Lemma 4.1 to show the reduced Laplacian is

Z-equivalent to the matrix
h —1
—(fi=1) h+1]|°

We now add (f; — 1) times the right column to the left column. Then we add the
left column to the right column. As a result, the top row will have 1 as the first
entry and zeros everywhere else. We use the top row to eliminate all other entries
in the first column. In matrix form, these steps are

1 -1 _ 1 0 _(1 0
h(fi—1) h+1| " |h(fi—=1) hfi+1]| |0 hfi+1]|"
Consequently, the group presented is

Lnfy+1- U
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Theorem 4.7. The sandpile group of the parallel composition of h paths with
length 1 and two paths with respective lengths f| and f>, where f1, fo > 2, is of the
form

L fi+ foth(fi f)-
Proof. The Laplacian of this family of graphs is of the form
h+2| D1 | Dy| —h
D] | By C/
D] B| C)
—h | C1 | Cy| h+2

Graphs in this family are Eulerian; thus we can let the first row and column represent
the sink. The resulting reduced Laplacian will be of the form

B, c/
By| C)
Ci|Cy| h+2

We utilize Lemma 4.1 and additional steps seen in the proof of Theorem 4.2 to
condense B and B,, producing the matrix

S 0 -1
0 b2 —1
—(H—D —(foa—1) h+2
We add (f; — 1) times the right column to the left column. Then we add the left
column to the right column and use the top row to eliminate all other entries in the
first column:
1 0 —1 1 0 0
—(fi-D f2 -1 =10 £ —h
h(fi=D+(fi—1) —(f2—1) h+2 0 —(f2—=1) hfi+fi+l

Observe, the top row and left column form the standard basis vector and can
therefore be eliminated using the fourth elementary operation:

12 —h
| —(fa=1) hfi+fi+1]"
Adding the bottom row to the top will produce the matrix

1 hfi+1
| — (=D hfi+fi+1]"

We now add (f> — 1) times the top row to the bottom row. As a result, the left
column has 1 as the first entry and O everywhere else. We use this to put the top
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row and column into the form of the standard basis vector:

0 i)
0 fi+fot+h(fif2)

Therefore, the group is
L fi+ frth(fi f2)- .

5. Conclusion

The techniques of the preceding sections allow us to easily find the sandpile group
of a wide range of graphs. For example, consider the following graph:

This graph is the series composition of four parallel graphs. We apply Corollary 4.3
to the first parallel graph from the left. This graph is the parallel composition of
three paths of length 2, so it has a sandpile group of
3-2

(EB Zz) © 223 =122D Ls.

i=1
Observe that the second graph is the parallel composition of four paths of length 3.
Therefore, applying Corollary 4.3 yields

4-2

(@ 23) ©234=203D 23D Z1>.
i=1

The third graph is the parallel composition of four paths, three of length 2 and a
single path of length 3. Therefore, applying Corollary 4.4 yields
4-3

(@ ZZ) D Zged2.3) ® Z(2242.3(4—1)/ ged(2,3) = L2 ® Z12.
i=1

The fourth graph is the parallel composition of four paths, three of length 2 and a
single path of length 4. Therefore, applying Corollary 4.4 yields
4-3
(@ Z2> D Zged2.4) O L (2242.44-1))/ ged2,4) = L2 D L2 D Z14.
i=1
The entire graph is formed by using series operations to combine all four parallel
graphs. By Theorem 3.1 the resulting sandpile group will be the direct sum of the
sandpile groups of all four parallel graphs. Consequently, the sandpile group is

1@ L6 P13 PI3 B 112D L@ LI DL D 14.
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This example shows how the tools presented in this paper allow us to easily compute
the sandpile groups of rather complicated graphs.

We have presented the completely general result for the series composition of
graphs, namely that the sandpile group is the direct sum of the component sandpile
groups. We initially sought a similar result for parallel composition of graphs.
While a completely general result about parallel composition eluded us, we were
able to prove results about the parallel composition of paths, including a significant
reduction in the size of the matrix needed to compute the sandpile groups for such
graphs. This work has been fascinating, and we hope to see more general results
involving the sandpile groups of the parallel composition of graphs in the future.
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