

a journal of mathematics

Eigenvalues of the sum and product of anticommuting matrices

Vadim Ponomarenko and Louis Selstad

Eigenvalues of the sum and product of anticommuting matrices

Vadim Ponomarenko and Louis Selstad

(Communicated by Chi-Kwong Li)

Improving on a recent result of Zhong, we characterize the eigenvalues of AB and A + B for square matrices A, B satisfying AB + BA = 0.

Square matrices A, B are called anticommuting if AB = -BA. Such matrices are important in mathematical physics, e.g., as Pauli spin matrices. They are of continued mathematical interest; see, e.g., [Hrubeš 2016; Shapiro and Martin 1998; Taussky 1970]. The recent paper [Zhong 2017] presented the following theorem.

Theorem 1 (Zhong). Let A, B be square matrices with $\sigma(A) = \{\lambda_1, \ldots, \lambda_n\}$, $\sigma(B) = \{\mu_1, \ldots, \mu_n\}$. Suppose that A, B anticommute, and for each eigenvalue λ_i of A the algebraic multiplicity equals the geometric multiplicity. Then

(1)
$$\sigma(AB) \subseteq \{\lambda_j \mu_k i : all \ j, k\}$$
, and

(2)
$$\sigma(A+B) \subseteq \{\pm \sqrt{\lambda_j^2 + \mu_k^2} : all \ j, k\}.$$

We improve on the previous theorem by slightly weakening the hypotheses, and finding $\sigma(AB)$ and $\sigma(A+B)$ exactly (in addition to various structural results). We will put A into Jordan canonical form, which will impose a (to be defined) correspondence between eigenvalues of A and of B. Our main result is:

Main Theorem. Let A, B be square matrices with $\sigma(A) = \{\lambda_1, \ldots, \lambda_n\}$, $\sigma(B) = \{\mu_1, \ldots, \mu_n\}$. Suppose that A, B anticommute, and for each nonzero eigenvalue λ_i of A the algebraic multiplicity equals the geometric multiplicity. Then

(1)
$$\sigma(AB) = \{\lambda_j \mu_k i : corresponding j, k\}, and$$

(2)
$$\sigma(A+B) = \{\pm \sqrt{\lambda_j^2 + \mu_k^2} : corresponding \ j, k\}.$$

Proof. See Corollaries 7 and 9, to follow.

MSC2010: 15A18.

Keywords: anticommutative, eigenvalues, matrix spectrum.

Before proceeding, we set some notation. We define \mathbb{C}^{\bullet} as $\mathbb{C}\setminus\{0\}$. Given a square $n\times n$ matrix M, we recall the characteristic polynomial $p_M(t)=|tI_n-M|$. A key property of characteristic polynomials is that $p_{AB}(t)=p_{BA}(t)$. If AB+BA=0, then

$$p_{AB}(t) = p_{BA}(t) = p_{-AB}(t)$$

= $|tI_n + AB| = (-1)^n |(-t)I_n - AB| = (-1)^n p_{AB}(-t)$.

Consequently, for even (resp. odd) n, the function $p_{AB}(t)$ is even (resp. odd). Since $p_{AB}(t)$ is a polynomial, it must therefore be a sum of monomials in only even (resp. odd) powers of t. In general, $p_{AB}(t)$ cannot be determined from $p_A(t)$ and $p_B(t)$.

We now present a familiar definition, generalized to nonsquare matrices.

Definition 2. Let $m, n \in \mathbb{N}$, and let C be an $m \times n$ matrix. We say that C is *upper triangular* if it satisfies $C_{i,j} = 0$ for all i, j with $j - i < \max(0, n - m)$.

For an upper triangular matrix C, its nonzero entries are confined to a triangle in the upper-right corner whose sides are horizontal, vertical, and of slope -1. This triangle has one corner at $C_{1,n}$ and the other corners at either $\{C_{1,1}, C_{n,n}\}$ (if $m \ge n$) or at $\{C_{1,n-m+1}, C_{m,n}\}$ (if $m \le n$). For m = n, this coincides with the usual definition of "upper triangular".

The product of upper triangular matrices satisfies a useful property.

Theorem 3. Let $m, n \in \mathbb{N}$. Let F be an upper triangular $m \times n$ matrix, and E an upper triangular $n \times m$ matrix. Then FE is an $m \times m$ matrix satisfying $(FE)_{i,j} = 0$ for all i, j with j - i < |n - m|. In particular, if $n \neq m$, then FE is strictly upper triangular, and hence satisfies $p_{FE}(t) = t^m$.

Proof. Note that $(FE)_{i,j} = \sum_{k=1}^n F_{i,k} E_{k,j}$. Suppose first that $n \ge m$, and j-i < n-m. Then $F_{i,k} = 0$ for all i, k with k-i < n-m. Also, $E_{k,j} = 0$ for all k, j with j-k < 0. Hence, if k > j, then $E_{k,j} = 0$; if instead $k \le j$, then $k-i \le j-i < n-m$, so $F_{i,k} = 0$. Thus $(FE)_{i,j} = 0$. Suppose now that n < m, and j-i < m-n. Then $F_{i,k} = 0$ for all i, k with k-i < 0. Also, $E_{k,j} = 0$ for all k, j with j-k < m-n. Hence, if k < i, then $F_{i,k} = 0$; if instead $k \ge i$, then $j-k \le j-i < m-n$, so $E_{k,j} = 0$. Thus $(FE)_{i,j} = 0$.

We recall the (square) upper shift matrix U_n (of size $n \in \mathbb{N}$), which has ones on the superdiagonal and zeroes elsewhere. Using the Kronecker delta function, we may define $(U_n)_{i,j} = \delta_{i+1,j}$. For future use, we define matrix U_n^* to be any integer matrix whose entries satisfy $0 \le (U_n^*)_{i,j} \le (U_n)_{i,j}$. We next recall (square) Jordan blocks, which exist for any eigenvalue α and any size $n \in \mathbb{N}$, defined as $J_n(\alpha) = \alpha I_n + U_n$.

We recall that a matrix is in Jordan canonical form if it is a block diagonal matrix, whose diagonal blocks are each Jordan blocks (of any size and any eigenvalues).

The celebrated Jordan canonical form theorem states that every square matrix is similar to one in Jordan form. We now apply this similarity to the anticommutative relation. If AB + BA = 0, choose P so that PAP^{-1} is in Jordan form. We have

$$PAP^{-1}PBP^{-1} + PBP^{-1}PAP^{-1} = P0P^{-1} = 0.$$

Set $A' = PAP^{-1}$ and $B' = PBP^{-1}$; we have A'B' + B'A' = 0. A is similar to A' and B is similar to B', and similarity preserves characteristic polynomials (and hence eigenvalues). Henceforth we simply assume that AB + BA = 0 and that A is in Jordan form.

We now partition A, B into blocks, based on the block diagonal structure of the Jordan form of A. Considering an arbitrary $m \times n$ block C of B we find that the anticommuting relation forces $J_m(\alpha)C + CJ_n(\beta) = 0$ for some diagonal Jordan blocks $J_m(\alpha)$, $J_n(\beta)$ of A. This forces most such blocks C to be zero, and imposes upper triangularity on the rest.

Theorem 4. Let $m, n \in \mathbb{N}$, and let C be an $m \times n$ matrix. Suppose that

$$J_m(\alpha)C + CJ_n(\beta) = 0$$

for some $\alpha, \beta \in \mathbb{C}$. If $\alpha + \beta \neq 0$, then C = 0. If instead $\alpha + \beta = 0$, then C must be upper triangular.

Proof. Note that $(U_mC)_{m,j} = 0$, and $(U_mC)_{i,j} = C_{i+1,j}$ for i < m. Similarly, $(CU_n)_{i,1} = 0$, and $(CU_n)_{i,j} = C_{i,j-1}$ otherwise. Conventionally, define $C_{i,j} = 0$ if i > m or j < 1. We have

$$0 = J_m(\alpha)C + CJ_n(\beta) = (\alpha + \beta)C + U_mC + CU_n.$$

Now, U_mC moves the rows of C upward, inserting a zero row, while CU_n moves the columns of C to the right, inserting a zero column. Hence, in $U_mC + CU_n$, the southwest frontier of C must move northeast.

We first consider $\alpha + \beta \neq 0$. Set S to be the set of those $(i, j) \in \mathbb{N}^2 \cap [1, m] \times [1, n]$ which correspond to a nonzero entry in C. Suppose, by way of contradiction, that S is nonempty. Take $(i, j) \in K'$ that is minimal with respect to j - i, i.e., on the southwest frontier of C. If there is more than one with this minimal j - i, take the one with maximal i. Look at the (i, j)-entry of $0 = (\alpha + \beta)C + U_mC + CU_n$. We have

$$0 = (\alpha + \beta)C_{i,j} + C_{i+1,j} + C_{i,j-1}.$$

Either since i+1>m or since j-(i+1)< j-i, we must have $C_{i+1,j}=0$. Either since j-1<1 or since (j-1)-i< j-i, we must have $C_{i,j-1}=0$. In other words, the southwest frontier of U_mC+CU_n has moved away from (i,j). Hence $0=(\alpha+\beta)C_{i,j}$. But since $\alpha+\beta\neq 0$, we have $C_{i,j}=0$, which is a contradiction. Consequently S is empty.

We now consider the case of $\alpha + \beta = 0$. First we take the case $m \ge n$. Set K to be the set of those $(i, j) \in \mathbb{N}^2 \cap [1, m] \times [1, n]$ such that j - i < 0. Let K' be those elements of K which correspond to a nonzero entry in C. Suppose, by way of contradiction, that K' is nonempty. Take $(i, j) \in K'$ that is minimal with respect to j - i. If there is more than one with this minimal j - i, take the one with minimal i. We have

$$0 = (\alpha + \beta)C + U_mC + CU_n = U_mC + CU_n.$$

Note that if i = 1 then j < 1, which is impossible. Hence $i \ge 2$. Look at the (i-1, j)-entry of this matrix. We have $0 = C_{i,j} + C_{i-1,j-1}$. Either since j < 1, or since (j-1) - (i-1) = j-i and i-1 < i, we must have $C_{i-1,j-1} = 0$. But then $C_{i,j} = 0$, a contradiction. Hence K' is empty.

Lastly, we consider the case m > n. Set K to be the set of those $(i, j) \in \mathbb{N}^2 \cap [1, m] \times [1, n]$ such that j - i < n - m. Let K' be those elements of K which correspond to a nonzero entry in C. Suppose, by way of contradiction, that K' is nonempty. Take $(i, j) \in K'$ that is minimal with respect to j - i. If there is more than one with this minimal j - i, take the one with maximal i. We have

$$0 = (\alpha + \beta)C + U_mC + CU_n = U_mC + CU_n.$$

Note that if j = n then -i < -m, or i > m, which is impossible. Hence $j \le n - 1$. Look at the (i, j + 1)-entry of this matrix. We have $0 = C_{i+1, j+1} + C_{i, j}$. Either since i + 1 > m, or since (j + 1) - (i + 1) = j - i and i + 1 > i, we must have $C_{i+1, j+1} = 0$. But then $C_{i, j} = 0$, a contradiction. Hence K' is empty. \square

It turns out that the upper triangular matrices C from Theorem 4 have additional banded structure, which we will not explore.

We now impose a particular order to the diagonal Jordan blocks of A. By reordering rows and columns if necessary, we collect together all of the Jordan blocks of eigenvalue 0 (if any) into one big block $A(0) = U_n^*$ for some $n \in \mathbb{N}_0$ (here n is the algebraic multiplicity of eigenvalue 0 in A). The corresponding diagonal big block of B, which we call B(0), is upper triangular by Theorem 4.

For each nonzero eigenvalue α , we also collect together all of the Jordan blocks of $\pm \alpha$ into one big block $A(\alpha)$, which has n copies of α on the diagonal, followed by m copies of $-\alpha$. By reversing the roles of α , $-\alpha$ if necessary, we assume that $n \ge m$. We have

$$A(\alpha) = \begin{pmatrix} \alpha I_n + U_n^{\star} & 0 \\ 0 & -\alpha I_m + U_m^{\star} \end{pmatrix}.$$

We now repartition A, B into big blocks, based on the block diagonal structure induced by these big blocks. We denote by

$$B(\alpha) = \begin{pmatrix} 0 & E \\ F & 0 \end{pmatrix}$$

the diagonal big block of B corresponding to $A(\alpha)$. We call this the big block Jordan form for B. By Theorem 4 again, B will now also be block diagonal. Hence $p_B(t)$ is just the product of all the $p_{B(\alpha)}(t)$.

These big blocks induce a correspondence between the eigenvalues of $A(\alpha)$, namely $\pm \alpha$, and the eigenvalues of $B(\alpha)$.

We can now compute the characteristic polynomial of $B(\alpha)$ (for nonzero α).

Theorem 5. Let $m, n \in \mathbb{N}$ with $n \ge m$. Suppose E is an $n \times m$ matrix and F is an $m \times n$ matrix. Set

$$B(\alpha) = \begin{pmatrix} 0 & E \\ F & 0 \end{pmatrix}.$$

Then $p_{B(\alpha)}(t) = t^{n-m} p_{FE}(t^2)$.

Proof. We calculate

$$p_{B(\alpha)}(t) = |tI - B(\alpha)| = \begin{vmatrix} tI_n & -E \\ -F & tI_m \end{vmatrix}.$$

Since tI_n is invertible, this equals

$$|tI_n||tI_m - (-F)(tI_n)^{-1}(-E)| = t^n|tI_m - t^{-1}FE|$$

= $t^n|t^{-1}I_m||t^2I_m - FE| = t^{n-m}p_{FE}(t^2)$. \square

If n > m, then by Theorem 3, $p_{FE}(t) = t^m$. Hence, $p_{B(\alpha)} = t^{n-m}t^{2m} = t^{n+m}$, and $B(\alpha)$ has only 0 as an eigenvalue. If we assume instead that big block $B(\alpha)$ has a nonzero eigenvalue, then n = m. This makes $p_{A(\alpha)}(t) = (t - \alpha)^m (t + \alpha)^m = (t^2 - \alpha^2)^m$ and $p_{B(\alpha)}(t) = p_{FE}(t^2)$ both even. If we assume that A is invertible and that every big block $B(\alpha)$ has a nonzero eigenvalue, then $p_A(t)$ and $p_B(t)$ must both be even.

We now focus our attention on the case when big block $A(\alpha)$ is diagonalizable for nonzero α . In this case, the geometric multiplicity and algebraic multiplicity of α coincide.

Theorem 6. Let $\alpha \in \mathbb{C}^{\bullet}$, and let $m, n \in \mathbb{N}$. Suppose we have

$$A(\alpha) = \begin{pmatrix} \alpha I_n & 0 \\ 0 & -\alpha I_m \end{pmatrix}, \quad B(\alpha) = \begin{pmatrix} 0 & E \\ F & 0 \end{pmatrix}.$$

Then

$$p_{A(\alpha)B(\alpha)}(t) = (i\alpha)^{n+m} p_{B(\alpha)} \left(\frac{t}{i\alpha}\right),$$
$$p_{A(\alpha)+B(\alpha)}(t) = (t-\alpha)^{n-m} p_{FE}(t^2 - \alpha^2).$$

Proof. We calculate

$$p_{A(\alpha)B(\alpha)}(t) = |tI - A(\alpha)B(\alpha)| = \begin{vmatrix} tI_n & -\alpha E \\ \alpha F & tI_m \end{vmatrix}.$$

Since tI_n is invertible, this equals

$$\begin{aligned} |tI_n||tI_m - (\alpha F)(tI_n)^{-1}(-\alpha E)| \\ &= t^n |tI_m - (-\alpha^2 t^{-1})FE| \\ &= t^n |(-\alpha^2)t^{-1}I_m| \left| \left(-\frac{t^2}{\alpha^2}I_m - FE \right) \right| = t^{n-m} (-\alpha^2)^m p_{FE} \left(\left(\frac{t}{i\alpha} \right)^2 \right) \\ &= \left(\frac{t}{i\alpha} \right)^{n-m} (i\alpha)^{n-m} (i\alpha)^{2m} p_{FE} \left(\left(\frac{t}{i\alpha} \right)^2 \right) = (i\alpha)^{n+m} p_{B(\alpha)} \left(\frac{t}{i\alpha} \right). \end{aligned}$$

We now calculate

$$p_{A(\alpha)+B(\alpha)}(t) = |tI - A(\alpha) - B(\alpha)| = \begin{vmatrix} (t-\alpha)I_n & -E \\ F & (t+\alpha)I_m \end{vmatrix}.$$

Since $(t - \alpha)I_n$ is invertible, this equals

$$|(t - \alpha)I_n| |(t + \alpha)I_m - F((t - \alpha)I_n)^{-1}E|$$

$$= (t - \alpha)^n |(t + \alpha)I_m - (t - \alpha)^{-1}FE|$$

$$= (t - \alpha)^n |(t - \alpha)^{-1}I_m| |(t + \alpha)(t - \alpha)I_m - FE|$$

$$= (t - \alpha)^{n-m} p_{FF}(t^2 - \alpha^2).$$

From our characteristic polynomial calculations, we can derive the eigenvalues of $A(\alpha)B(\alpha)$ and $A(\alpha)+B(\alpha)$ from the eigenvalues of $A(\alpha)$ and $B(\alpha)$.

Corollary 7. Let $\alpha \in \mathbb{C}^{\bullet}$, and let $m, n \in \mathbb{N}$. Suppose we have

$$A(\alpha) = \begin{pmatrix} \alpha I_n & 0 \\ 0 & -\alpha I_m \end{pmatrix}, \quad B(\alpha) = \begin{pmatrix} 0 & E \\ F & 0 \end{pmatrix}.$$

Let $\{\lambda_k\}$ denote the eigenvalues of $B(\alpha)$, with multiplicity. Then the eigenvalues of $A(\alpha)B(\alpha)$ are exactly $\{\pm i\alpha\lambda_k\}$, and the eigenvalues of $A(\alpha)+B(\alpha)$ are exactly $\{\pm\sqrt{\alpha^2+\lambda_k^2}\}$.

Proof. Let

$$p_{FE}(t) = \prod_{k=1}^{m} (t - \mu_k),$$

where the μ_k are the eigenvalues of FE, not assumed distinct. Then

$$p_{B(\alpha)}(t) = t^{n-m} \prod_{k=1}^{m} (t^2 - \mu_k);$$

hence the eigenvalues of $B(\alpha)$ consist of n-m copies of 0, and $\pm \sqrt{\mu_k}$ for each eigenvalue of FE. We can interpret the complex square root as a principal value, but it doesn't matter since we get both square roots.

Now

$$p_{A(\alpha)B(\alpha)}(t) = \left(\frac{t}{i\alpha}\right)^{n-m} (i\alpha)^{n+m} \prod_{k=1}^{m} \left(\left(\frac{t}{i\alpha}\right)^{2} - \mu_{k}\right) = t^{n-m} \prod_{k=1}^{m} (t^{2} - (-\alpha^{2}\mu_{k}));$$

hence its eigenvalues are n-m copies of 0, and $\pm \sqrt{-\alpha^2 \mu_k}$ for each eigenvalue μ_k of FE.

Finally

$$p_{A(\alpha)+B(\alpha)}(t) = (t-\alpha)^{n-m} p_{FE}(t^2 - \alpha^2) = (t-\alpha)^{n-m} \prod_{k=1}^{m} (t^2 - \alpha^2 - \mu_k);$$

hence its eigenvalues are n-m copies of α , and $\pm \sqrt{\alpha^2 + \mu_k}$.

Lastly, we extend these results to A(0) and B(0).

Theorem 8. Let 0 be an eigenvalue of A of algebraic multiplicity $n \ge 1$. Let A(0), B(0) be the corresponding big blocks. Then

$$p_{A(0)B(0)}(t) = p_{A(0)}(t) = t^n,$$

 $p_{A(0)+B(0)}(t) = p_{B(0)}(t).$

Proof. A(0) is strictly upper triangular, and B(0) is upper triangular. Hence A(0)B(0) is strictly upper triangular, while A(0) + B(0) is upper triangular with the same diagonal entries as B(0).

Corollary 9. Let 0 be an eigenvalue of A of algebraic multiplicity $n \ge 1$. Let A(0), B(0) be the corresponding big blocks. Let $\{\lambda_k\}$ denote the eigenvalues of $B(\alpha)$, with multiplicity. Then the eigenvalues of $A(\alpha)B(\alpha)$ are all 0, and the eigenvalues of $A(\alpha) + B(\alpha)$ are exactly $\{\lambda_k\}$.

We close by observing that it appears that the diagonalizability hypothesis on $A(\alpha)$ can be weakened or removed entirely, but we are unable to prove this.

Acknowledgment

The authors would like to thank the anonymous referee, who pointed out Theorem 4.4.6 and Lemma 4.4.11 in [Horn and Johnson 1991], which the reader may wish to consult as related to our Theorem 4.

References

[Horn and Johnson 1991] R. A. Horn and C. R. Johnson, *Topics in matrix analysis*, Cambridge Univ. Press, 1991. MR Zbl

[Hrubeš 2016] P. Hrubeš, "On families of anticommuting matrices", *Linear Algebra Appl.* **493** (2016), 494–507. MR Zbl

[Shapiro and Martin 1998] D. B. Shapiro and R. Martin, "Anticommuting matrices: 10456", *Amer. Math. Monthly* **105**:6 (1998), 565–566. MR

[Taussky 1970] O. Taussky, "Sums of squares", *Amer. Math. Monthly* **77** (1970), 805–830. MR Zbl [Zhong 2017] W. Zhong, "On the eigenvalues of anticommuting matrices", *College Math. J.* **48**:5 (2017), 368–369. MR Zbl

Received: 2020-02-18 Revised: 2020-06-01 Accepted: 2020-06-02

vponomarenko@sdsu.edu

San Diego State University, San Diego, CA, United States
louisselstad@icloud.com

San Diego State University, San Diego, CA, United States

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Robert B. Lund	Clemson University, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Gaven J. Martin	Massey University, New Zealand
Martin Bohner	Missouri U of Science and Technology, USA	A Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia Mo	hammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Univ. of Virginia, Charlottesville
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	University of Alabama in Huntsville, USA	YF. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Virginia Commonwealth University, USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA
Chi-Kwong Li	College of William and Mary, USA		

PRODUCTION Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2020 is US \$205/year for the electronic version, and \$275/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2020 Mathematical Sciences Publishers

Structure constants of $w(\mathfrak{sl}_2)$	541
ALEXIA GOURLEY AND CHRISTOPHER KENNEDY	
Conjecture © holds for some horospherical varieties of Picard rank 1	551
Lela Bones, Garrett Fowler, Lisa Schneider and Ryan	
M. Shifler	
Condensed Ricci curvature of complete and strongly regular graphs	559
VINCENT BONINI, CONOR CARROLL, UYEN DINH, SYDNEY DYE,	
Joshua Frederick and Erin Pearse	
On equidistant polytopes in the Euclidean space	577
CSABA VINCZE, MÁRK OLÁH AND LETÍCIA LENGYEL	
Polynomial values in Fibonacci sequences	597
Adi Ostrov, Danny Neftin, Avi Berman and Reyad A. Elrazik	
Stability and asymptotic analysis of the Föllmer–Schweizer decomposition on a	607
finite probability space	
SARAH BOESE, TRACY CUI, SAMUEL JOHNSTON, SYLVIE VEGA-MOLINO	
AND OLEKSII MOSTOVYI	
Eigenvalues of the sum and product of anticommuting matrices	625
VADIM PONOMARENKO AND LOUIS SELSTAD	
Combinatorial random knots	633
Andrew Ducharme and Emily Peters	
Conjugation diameter of the symmetric groups	655
Assaf Libman and Charlotte Tarry	
Existence of multiple solutions to a discrete boundary value problem with mixed	673
periodic boundary conditions	
KIMBERLY HOWARD, LONG WANG AND MIN WANG	
Minimal flag triangulations of lower-dimensional manifolds	683
CHRISTIN BIBBY, ANDREW ODESKY, MENGMENG WANG, SHUYANG	
Wang, Ziyi Zhang and Hailun Zheng	
Some new Gompertz fractional difference equations	705
TOM CUCHTA AND BROOKE FINCHAM	