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We prove that every simple graph of order 12 which has minimum degree 6
contains a K¢ minor, thus proving Jgrgensen’s conjecture for graphs of order 12.
In the process, we establish several lemmata linking the existence of K¢ minors
for graphs to their size or degree sequence, by means of their clique sum structure.
We also establish an upper bound for the order of graphs where the 6-connected
condition is necessary for Jgrgensen’s conjecture.

1. Introduction

All the graphs considered in this article are simple (nonoriented, without loops or
multiple edges). For a graph G, a minor of G is any graph that can be obtained from
G by a sequence of vertex deletions, edge deletions, and simple edge contractions.
A simple edge contraction means identifying its endpoints, deleting that edge, and
deleting any double edges thus created. A graph G is called apex if it has a vertex v
such that G — v is planar, where G — v is the subgraph of G obtained by deleting
vertex v and all edges of G incident to v. Jgrgensen [1994] stated the following
conjecture:

Conjecture 1. Let G be 6-connected graph which does not have a K¢ minor. Then
G is apex.

This result relates to Hadwiger’s conjecture [1943], which states:

Conjecture 2. For every integer ¢ > 1, if a loopless graph G has no K; minor, then
it is (z—1)-colorable.

Conjecture 2 is known to be true for # < 6. For t =5, the conjecture is equivalent
to Appel and Haken’s 4-Color theorem [1989]. For t = 6, Robertson, Seymour, and
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Thomas [1993] proved it using a result of Mader. Mader [1968b] proved that a min-
imal counterexample to Conjecture 2 for # = 6 has to be 6-connected. Together with
Jgrgensen’s conjecture, it would provide another proof that Conjecture 2 holds for
t = 6, along with more information about the structure of graphs with no K¢ minors.

Jgrgensen himself took steps towards proving Conjecture 1. In [Jgrgensen 1994],
he proved that every graph G with at most 11 vertices and minimal degree §(G) at
least 6 is contractible to a K¢. In his proof, he used the following result of [Mader
1968a]:

Theorem 3. Every simple graph with minimal degree at least 5 either has a minor
isomorphic to K¢ or it has a minor isomorphic to the icosahedral graph.

The icosahedral graph is the only 5-regular planar graph on 12 vertices. Mader
[1968a] also proved the following theorem.

Theorem 4. For every integer 2 <t <7 and every simple graph G of ordern >t — 1
which has no minor isomorphic to K;, G has at most (t —2)n — (IEI) edges.

Note that for r = 6, the theorem implies that every graph G of order n and
size 4n — 9 or more has a K¢ minor.
Jgrgensen [1988] classified the graphs of order n and size 4n — 10.

Theorem 5. Let p be a natural number, 5 < p < 7. Let G be a graph with
n vertices and (p —2)n — (‘2’) edges that is not contractible to K ,. Then either G is
an MP,,_s-cockade or p =1 and G is the complete 4-partite graph K> 3 7 3.

For p = 6, this theorem shows that any graph G of order n and size 4n — 10
either contains a K¢ minor, or it is an MP;-cockade. The following is Jgrgensen’s
definition of an MP;-cockade.

Definition 6. MP;-cockades are defined recursively as follows:

(1) Ks is an MP;-cockade and if H is a 4-connected maximal planar graph then
H % Ky 1s an MP;-cockade.

(2) Let G| and G, be disjoint MP;-cockades, and let x1, x, x3, and x4 be the
vertices of a K4 subgraph of G| and let y;, y», y3, and y4 be the vertices of a
K4 subgraph of G,. Then the graph obtained from G| U G» by identifying x;
and y;, for j =1, 2, 3,4, is an MP;-cockade.

For two graphs G| and G,, we denote by G| % G, the graph with vertex set
V(G1)uV(G,) and edge set E(G1) U E(G,) U E', where E’ is the set of edges
with one endpoint in V(G) and the other endpoint in V(G;). In G| x v, we
call v a cone over Gi. A graph G is the cligue sum of G| and G, over K, if
V(G) =V(G)UV(Gy), E(G) = E(G1) U E(G,) and the subgraphs induced
by V(G1) NV (G») in both G| and G, are complete of order p. In this context,



SIMPLE GRAPHS OF ORDER 12 AND MINIMUM DEGREE 6 CONTAIN K¢ MINORS 831

an MPj-cockade is either a cone over a 4-connected maximal planar graph or the
clique sum over K4 of two smaller MP;-cockades.

Kawarabayashi, Norine, Thomas, and Wollan [2018] proved that Conjecture 1
holds for sufficiently large graphs. Little is known about the validity of Conjecture 1
for small order graphs. In this paper, we prove that Jgrgensen’s conjecture holds
for graphs of order 12 in a more general setting.

Theorem 7. Let G be a simple graph of order 12 and assume that §(G) > 6, where
8(G) denotes the minimal degree of G. Then G contains a K¢ minor.

Note that the theorem implies Jgrgensen’s conjecture is vacuously true for graphs
of order 12.

2. Main theorem

For a graph G, we denote by V (G) its vertex set and by E(G) its edge set. The
size of V (G) is called the order of G, and the cardinality of E(G) is called the size
of G. Forn > 1, K, denotes the complete graph of order n and K, denotes the
complete graph of order n with one edge removed. If vy, vy, ..., v are vertices of
G, then (vy, va, ..., vt)c denotes the subgraph of G induced by these vertices. If
v is a vertex of G, then Ng[v] is the subgraph of G induced by v and the vertices
adjacent to v in G (the closed neighborhood of v). Let Ng(v) denote the subgraph
of G induced by all the vertices adjacent to v (the open neighborhood of v). If S is
a subset of V(G), then G — § is the subgraph of G obtained by deleting all of the
vertices in S and all the edges of G to which S is incident.
The following lemma is a corollary of Theorem 4.

Lemma 8. Let G be a simple graph of order n and size 4n — 10. If G — v is planar,
then v cones over G — v.

Proof. Since G — v is planar of order n — 1, it has at most 3(n — 1) —6=3n—9
edges. This implies that v has at least 4n — 10 — (3n —9) = n — 1 neighbors, and
the conclusion follows. O

Proof of Theorem 7. Let G denote a simple graph of order 12 and minimal degree
3(G) at least six. It follows that G has at least size 36. By Theorem 4, if the size
of G is at least 39, then G contains a K¢ minor. We shall prove Theorem 7 by
considering the size of G, 36 < |E(G)| < 38.

Case 1: Assume |E(G)| = 38. By Theorem 3, either G contains a K¢ minor, or G
is apex, or G is the clique sum over K4 of two MP; cockades.

If G is isomorphic to H % K, where H is a maximal planar graph on 11 vertices,
then §(H) > 5 and, by Theorem 3, it follows that H has a K, minor and thus G
has a K¢ minor.
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Assume that G is the clique sum over S >~ K4 of two MP;-cockades. If G — S
has more than two connected components, then at least one of them has at most
two vertices. But this contradicts the fact that 6(G) > 6. So G — S = Q| U Q».
Furthermore, unless |Q1| = | Q3| = 4, the graph either contains a K7 subgraph (if
|Q1]=3), 0or §(G) <6 (if 1 <|Qq| <2). Since §(G) > 6, it follows that each vertex
of Q; connects to at least two other vertices of Q;, for i = 1, 2 respectively.

Without loss of generality, let Q1 = (vy, v2, v3, v4)¢. If Q; is not isomorphic to
K4 forany of i =1, 2, say vivy ¢ E(Q1), since v and v, must both connect to
both v3 and v4, contracting the edges vjv3 and vov4 produces a minor of G which
contains a K¢ subgraph induced by v, v2, and the four vertices of S. If, on the other
hand, Q| >~ Q> >~ K4, as §(G) > 6, it follows that there are at least 12 edges between
each of the Q; and S. That would imply that |E(G)|>6+124+6+12+6=42,a
contradiction. It follows that for | E(G)| = 38, G has a K¢ minor.

Case 2: Assume |E(G)| = 37. Since §(G) > 6, it follows that the degree sequence
of G is either (6,6,6,6,6,6,6,6,6,6,6,8) or (6,6,6,6,6,6,6,6,6,6,7,7). In
either of the situations, we shall need the following lemma:

Lemma 9. Let M denote a graph of order 11 and size 34 such that (M) > 5.
Assume that M is not apex and has at most four vertices of degree 5. Then M
contains a K¢ minor.

Proof. By Theorem 5, either M contains a K¢ minor or is an MP;-cockade. Since M
is not apex, it follows that M is the clique sum over S >~ K4 of two MP;-cockades.
If M — S has more than two connected components, Q1, O», ..., then at least one
of them, say 1, has at most two vertices. As |Q| = 1 would violate the condition
8(M) > 5, it follows that |Q| = 2 and the subgraph of M induced by Q; and S
forms a K¢. So M —S§ = QU Q5 and, without loss of generality, Q1 = (v, v2, v3) i.
Unless Q1 ~ K3, since § (M) > 5, it follows that at least two vertices of Q| connect to
all the vertices of S and thus, via an edge contraction, they induce a K¢ minor of M.

If 0| ~ K3, there have to be exactly nine edges connecting the vertices of Q; to
those of S. If there are more than nine, the subgraph induced by the vertices of O
and S has seven vertices and more than 3 49 4 6 = 18 edges; thus it contains a K¢
minor by Theorem 4. If there are less than nine, then at least one of the vertices of
Q1 has degree less than 5. So all the vertices of Q; have degree 5, and the subgraph
induced by the vertices of O and S has exactly 18 edges. If L denotes the set
of edges connecting the vertices of Q to the vertices of S, then |L|+ |E(Q>)| =
34 — 18 = 16. On the other hand, since O, can have at most one vertex of degree
5 in M, it follows that |L| 4+ 2|E(Q>)| > 6 +6 4 6 4+ 5 = 23. Subtracting the last
two equalities we get |E(Q»)| > 7, a contradiction as Q> has four vertices. U

Assume the vertex degree sequence for G is (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8). Fur-
thermore, without loss of generality, we may assume deg;(v1) =6, deg;(vg) =8,
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and that Ng[vi] = (v, ..., v7)g. Let N = (v, v3, ..., v7)g, H={vs, ..., v12)G,
and let L denote the set of edges of G with one endpoint in N and the other in
H. The handshaking lemma provides the following relations between the sizes of
E(N), L,and E(H):

2|E(N)|+|L| =30, 2|E(H)|+|L|=32.

If |[E(H)| =10, thatis, H >~ K35, as every vertex of H must have at least two neigh-
bors in N (§(G) > 6), contracting the edges of Ng[v1], produces a K¢ minor of G.

If |[E(H)| <9, then |L| > 14 and thus |E(N)| < 8. It follows that there is a
vertex of N, say vz, such that deg, (v2) < 2. If degy (v2) < 2, contracting the edge
v1v would produce a minor of G of order 11 and size at least 35, which would
contain a K¢ minor by Theorem 4.

If degy (v2) = 2, then contracting the edge v;vy would produce a minor M of
G of order 11 and size precisely 34. Furthermore, since v, neighbors exactly three
vertices of H, the maximum degree of M is 8, so it cannot be apex, according to
Lemma 8. Lastly, M has at most two vertices of degree 5, since degy (v2) = 2. By
Lemma 9, M has a K¢ minor, and therefore so does G.

Assume the vertex degree sequence for G is (6, 6,6,6,6,6,6,6,6,6,7,7). If
the degree-7 vertices are connected in G, deleting the edge connecting them would
produce a 6-regular subgraph of order 36, to be dealt with in the last case of the
proof. So, without loss of generality, assume that deg;(vy) = 6, deg;(vs) =7,
and NG[vl] = (Ul, ey v7)G. Let N = (Uz, U3, ..., v7)G, H = (vg, ey v12>c, and
let L denote the set of edges of G with one endpoint in N and the other in H.
If deg(v;) = 7, for some 9 < i < 12, the same argument as before shows that
|E(N)| < 8 and thus G contains a K¢ minor. So we may assume deg; (v7) =7 and
v7vg ¢ E(G). Using the handshaking lemma, we get

2|E(N)|+|L| =31, 2|E(H)|+|L|=3l.

If |E(H)| = 10, contracting the edges of Ng[v;], produces a K¢ minor of G.

If |[E(H)| <9, then |[L| > 13 and thus |[E(N)| <9. If |[E(N)| <8, it follows
that there is a vertex of N, v;, such that degy (v;) <2. If deg, (v;) < 2, contracting
the edge viv; would produce a minor of G of order 11 and size at least 35, which
would contain a K¢ minor by Theorem 4.

Assume deg (v;) = 2. Contracting the edge v;v; produces a minor M of G of
order 11 and size 34. Moreover, since for 2 < j <7, v; neighbors at most four of
the vertices of H, M cannot be apex. Lastly, M has at most two vertices of degree 5,
since degy (v;) =2. By Lemma 9, M has a K¢ minor, and therefore so does G.

It follows that N is 3-regular, L =13 and |E(H)| =9; thatis, H >~ K . If the
missing edge of H has vg as its endpoint, and since degg; (vg) =7, it follows that vg
neighbors four vertices of N. As the other endpoint, say vy, neighbors three vertices
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Figure 1. Contracting the edges cd and eg produces a Kg-minor.

of N, it follows that there exists 2 <i < 6 such that v; is a common neighbor of
vg and vg. Contracting the edges v;vg and vjv;, for 2 < j <7, j #1i, one obtains
a K¢ minor of G, as every vertex of H neighbors at least one of the v;.

Assume the missing edge of H is vgvjg. Since N is 3-regular of order 6, it is
isomorphic to either K3 3 or the prism graph. If N ~~ K3 3, as vg neighbors three
vertices of N, contracting the edge connecting vg to one of its neighbors in N and
all the edges in the subgraph induced by v9, vjg, v11, and vy3, produces a minor of
G isomorphic to the graph in Figure 1. This minor has a K¢-minor.

If N is isomorphic to the prism graph in Figure 2, with the same labeling, for any
vertex of v of H, the subgraph of G induced by its neighbors among the vertices of
N must be complete (clique), since otherwise contracting v to one of its neighbors
and the edges of H — v produces a minor of G isomorphic to the graph in Figure 3.
This graph has a K¢-minor.

If vg and vy share a common neighbor among the vertices of N, say v;, then
contracting the edge v;v9 and vyv;, for 2 < j <7, j #1, produces a K¢-minor. If
v9 and vp have no common neighbor among the vertices of N, since vg, vig and vg
each have exactly three neighbors among the vertices of N, and v7 is not adjacent to
vg, up to a relabeling of vg and vy, it must be that vg and vg together with v,, v4, and
vg induce a K5 subgraph of G. Contracting all the edges of (vy, v7, vi9, V11, V12)G
produces a Kg-minor of G.

(%) U3

V4 Vs

Vg U7

Figure 2. The graph N, the open neighborhood of v;.
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N

Figure 3. Contracting the edges bg and ef produces a Kg-minor.

Case 3: Assume |G| = 36; that is, G is a 6-regular graph. Let vy, vs, ..., v7 be the
neighbors of some vertex v in G and let N = (v, v3, ..., v7)g = Ng(v1) be the
open neighborhood of vy. Let H = (vg, ..., v12)¢ and let L denote the subset of
E(G) of edges having one endpoint in N and the other in H. Then, as before, since
the degree of every vertex in G is 6, we have

2|E(H)|+|L| =30, 2|E(N)|+|L|=30:;

thus |E(N)|=|E(H)|. If |E(H)| =10, then H >~ K5. Since § (G) = 6 by hypothesis,
each vertex in H must be adjacent to a vertex in N. Contracting the edges of Ng[v]
produces a K¢ minor of G. It follows that |E(N)| <9 and, unless N is 3-regular,
there exists at least a vertex of N which has at most two neighbors in N. There are
two possible remaining cases: either the open neighborhood of every vertex of G
is 3-regular, or there is a vertex of G whose open neighborhood contains a vertex
of degree at most 2. Jgrgensen [1994] proved that in a 6-regular graph, if the open
neighborhood of every vertex of G is 3-regular, then any connected component of
the graph is isomorphic to either K3 3 3 or the complement of the Petersen graph.
Since both contain K¢ minors, it suffices to consider the case degy (v;) < 2, for
some 2 <i<7.

If, for some 2 <i <7, degy (v;) = 0, then contracting the edge vjv; produces
a minor of G of order 11 and size 35. By Theorem 4, this minor has a K¢ minor.

If, for some 2 <i <7, degy (v;) = 1, then contracting the edge v;v; produces
a minor M of G of order 11 and size 34. Furthermore, the degree sequence of this
minor would be (5,6, 6, 6,6,6,6,6,6,6,9); hence, by Lemma 8, M cannot be
apex. By Lemma 9, M would have a K¢ minor.

We may then assume that, for 2 <i <7, degy(v;) > 2 and, without loss of
generality, the neighbors of v, in NV are vz and vy.
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SRR

Figure 4. Graphs of order 5 and size at most 6, with minimum
degree 2.

Subcase 3.1: Assume that v3vqs € E(G). Contracting the edge viv, produces a
minor M of G of order 11 and size 33. Furthermore, the degree sequence of this
minor is (5, 5,6,6,6,6,6,6,6,6,8). Via a relabeling, for the rest of this subcase,
we may assume that deg,,(v;) = deg,,(v2) =5, and that deg,,(ve) = 8. As before,
let N = (vy, vs3, v4, Vs, U6) pr be the subgraph of M induced by all the neighbors
of vi, H=(v7,...,v11)m, and L the subset of edges of M with one endpoint in
N and the other in H. Adding degrees we get

20E(H)|+|L| =30, 2|E(N)|+|L|=26;

thus |E(H)|=|E(N)|+2. Note that | E(H)| <8, since if | E(H)| = 10, contracting
the edges of Ny[v1] produces a K¢ minor of M; if |[E(H)|=9, thatis, H >~ K, then,
without loss of generality, assume vyvg ¢ E(H). Since deg,,(v7) = deg,,(vg) =6,
it follows that both v; and vg have each three neighbors among the five vertices
of N; thus they share a common neighbor in N, say v;. Contracting the edges v; vy
and vyv;, for 2 < j #i < 6, we obtain a K¢ minor of M.

We may then assume that |E(H)| < 8, and thus |E(N)| < 6. If any vertex v;
of N has at most one neighbor in N, contracting the edge v;v; would produce a
minor of M of order 10 and size at least 31. By Theorem 4, this would contain
a K¢ minor. So every vertex of N has at least two neighbors in N. If follows that
5 <|E(N)| <6 and, by [Read and Wilson 1998], N is isomorphic to one of the
four graphs in Figure 4.

If deg, (v2) =2, then contracting the edge v v, produces a minor of M of order 10
and size 30, with degree sequence (5, 6, 6, 6, 6, 6, 6, 6, 6, 7). The following lemma
shows that M contains a K¢ minor.

Lemma 10. Let M denote a graph of order 10 and size 30 such that §(M) > 5.
Assume that M is not apex and has at most five vertices of degree 5. Then M
contains a K¢ minor.

Proof. By Theorem 5, either M contains a K¢ minor or is an MP;-cockade. Since M
is not apex, it follows that M is the clique sum over S >~ K4 of two MP;-cockades.
Since §(M) > 5, any connected component of M — S is of size at least 2. If any of



SIMPLE GRAPHS OF ORDER 12 AND MINIMUM DEGREE 6 CONTAIN K¢ MINORS 837

the connected components of M — S has exactly two vertices, then that component
together with S induces a K¢ subgraph of M. The only situation left to discuss is
when M — § has exactly two size-3 connected components, Q1 and Q. At least
one of them, say Q, contains at most two vertices of degree 5. If we denote by
L’ the set of edges connecting the vertices of Q; to the vertices of S, then

20E(Q))|+ L1 > 6+5+5=16.

Hence
IE(QQD|+IL'1>13 = [EQDI+IL'+]E(S)| >19;

thus Q; and S induce a subgraph of M of order 7 and size 19. By Theorem 4, this
subgraph contains a K¢ minor. ([

If degy (v2) = 3, then N is isomorphic to either graph B or graph C in Figure 4.
Furthermore, v, neighbors in N a vertex (say v3) of total degree 6 which has
degree 2 in N and does not neighbor the vertex of degree 8. Contracting the
edge viv; produces a minor P of M of order 10 and size 30. Furthermore, the
degree sequence of this minor is (4, 5, 6, 6, 6, 6, 6, 6, 7, 8) and thus it is not apex.
By Theorem 5, P either contains a K¢ minor or it is the clique sum over S >~ K4
of two MP;-cockades. Every vertex of S has degree at least 5 since it must connect
to every connected component of P — S. Let O denote the connected component
of P — § which contains the vertex of degree 4. Let H denote the graph induced
by the vertices of P — (SU Q1) and let L” denote the set of edges of P with one
endpoint in § and the other in H.

If |V(Q1)| =1, then

IL"|+|E(H)| =20,
IL"|+2|E(H)| > 6+6+6+645="29.

It follows that |[E(H)| > 9; that is, H ~ K5 or H >~ Ks. For H >~ K5, as every
vertex of H is adjacent to at least a vertex of S, contracting S produces a Kjg
minor of P. If H >~ K, assume a,b € V(H) and ab ¢ E(H). If degp(a) =5 or
degp(b) =5, then a and b share at least one common neighbor s in S. Contracting
the edge sa and then contracting the edges of the graph induced by the vertices of
Q1 US —{s} produces a K¢ minor of P, as every vertex of H other than a or b has
degree at least 6 and must therefore be adjacent to at least two vertices of S. Finally,
if degp(a) > 6 and degp(b) > 6, then a and b share at least two neighbors among
the vertices of S, say s; and s;. Since V (H)\{a, b} contains at most one vertex of
degree 5, that vertex is adjacent to at most one of {sy, 52}, say s;. Contracting the
edge s>a and then contracting the edges of the graph induced by the vertices of
Q1US — {s2} produces a K¢ minor of P.
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If |V(Q1)] =2, then (Q, US)p ~ K, and

IL"| +|E(H)| = 16,
IL"| +2|E(H)| > 6+ 64646 =24.

It follows that |E(H)| > 8, which is a contradiction (H has only four vertices). It
follows that |V (Q1)| = 3 and that (SU H) p contains a K, minor.

If deg,, (v2) =4, then N =~ D of Figure 4 and contracting the edge connecting
v] to the common neighbor of v, and vg in N produces a minor P of M of order
10 and size 30, with degree sequence (4, 6, 6, 6,6, 6,6, 6,7,7), where the two
degree-7 vertices and the degree-4 vertex form a triangle. Theorem 5 shows that P
is a clique sum over S ~ K4 of two MP;-cockades. Furthermore P — § has exactly
two connected components, O and Q. As any vertex that’s part of the clique has
at least degree 5 in P, we may assume that the vertex of degree 4 is a vertex of Q.
Unless |Q1] =1, both @ and Q, will contain vertices of degree at least 6 in P;
hence |Q1| = |Q»| = 3. But this implies that contracting any edge incident to the
vertex of degree 4 in Q1 produces a K¢ minor of the graph induced by Q; U S.

If [V(Q1)| =1, then let L” denote the set of edges in P with one endpoint in
K4 and the other in Q. It follows that

IL"|=74+7+6+6—12—4=10,
|E(Q2)| = 10;

hence O, >~ K5 and thus contracting the edges of the subgraph induced by Q| LI K4
produces a K¢ minor.

Subcase 3.2: Assume that v3vs ¢ E(G). Contracting the edge viv, produces a
minor M of G of order 11 and size 33. Furthermore, the degree sequence of this
minor is (5, 5,6,6,6,6,6,6,6,6,8). Via a relabeling, for the rest of this subcase,
we may assume that deg,,(v;) = deg,,(v7) =5, and that deg,,(ve) = 8. As before,
let N = (va, v3, v4, Vs, U6) pr be the subgraph of M induced by all the neighbors
of v, H=(v7,...,v11)u, and L the subset of edges of M with one endpoint in
N and the other in H. Adding degrees we get

2IE(H)|+|L1 =29, 2|E(N)|+|L|=2T7;

thus |E(H)|=|E(N)|+1. Furthermore, if | E(H)| =10, thatis, H >~ K5, contracting
v1v; for 2 <i < 6 produces a K¢ minor.

Assume |E(H)| =9 and |E(N)| = 8. Then by [Read and Wilson 1998], N is
isomorphic to one of the two graphs in Figure 5.

If N >~ A in Figure 5, as all vertices of N have minimum degree 6, contracting
the vertices of H (which is connected) to a single point and then further contracting
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A B
Figure 5. Graphs of order 5 and size 8, with minimum degree 2.

Figure 6. Subcase 3.2.1: degy (vs) = 3 and degy (v7) = 3.

the edge joining the newly obtained point and the only vertex of degree 2 in N
produces a K¢ minor.

If N >~ B in Figure 5, then we distinguish four cases based on the position of
ve and v7 inside N and H, respectively.

Subcase 3.2.1: Assume degy (vs) =3 and degy (v7) = 3; see Figure 6. Without loss
of generality, assume deg; (vg) = 3; that is, v7vg is the only edge missing in the com-
plete graph on the vertices of H. If vg neighbors vg, contracting the edge vgvg and all
the edges of (vy, vy, v3, V4, Us) s produces a K¢ minor of M. If vg does not neighbor
vg, then contracting the edges of (vy, vy, v3, v4, Vs, v3)y produces a K¢ minor of M.

Subcase 3.2.2: Assume deg, (ve) = 4 and degy (v7) = 3; see Figure 7. Without
loss of generality, we may assume degy (vg) = 3. If v7 and vg share a neighbor in N,
say v;, then contracting v;v;7 and then all the edges of (vi, N —v;)y, we obtain

Us

V3 V10

Figure 7. Subcase 3.2.2: deg, (vs) = 4 and degy (v7) = 3.
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V10

Figure 8. Subcase 3.2.3: degy (vs) = 3 and degy (v7) = 4.

a K¢ minor of G. So, as a set, {v7, vg} neighbors all the vertices of N. Without
loss of generality, vsv7, vgv7, Vsvg € E(M), vavs ¢ E(N). If vz neighbors either
of vyg or vy, say vjp, then contracting the edges v3vjg, vsv9 Will connect vz and
vs, contracting all the edges of (v,, v7, vs, v11) s Will connect vy and vy, and thus
we obtain a K¢ minor. But then, v3 must neighbor vg, and contracting the edge
v3v9 and all the edges of (v7, vs, vig, V11, V2)m produces a K¢ minor.

Subcase 3.2.3: Assume deg, (ve) = 3 and degy (v7) = 4; see Figure 8. Without
loss of generality, we may assume deg (vs) = degy (v9) = 3 and degy (vs) = 4.
Since vg and vg each connect to three vertices of N, they have a common vertex
in N. If this vertex is not ve, say v;, then contracting the edges v;vg and vv; for
2 < j#i <6, weobtain a K¢ minor of M. So {v7, vg, v9}, as a set, neighbors all the
vertices of N. Since v3 does not neighbor v7 and cannot neighbor both vg and vy, it
must neighbor one of vig or vy;. But then, contracting the edges of (ve, vi0, V11)m
and then contracting the edges of (v7, vg, vg, v2) s, We obtain a K¢ minor of M.

Subcase 3.2.4: Assume degy (vs) =4 and degy (v7) =4; see Figure 9. Without loss
of generality, we may assume that degy (vs) = degy (v9) = 3. Since both vg and
vg connect to three vertices of N, they must share at least one common neighbor in
N. If that common neighbor is not vg, say v,, contracting the edges vovg, and v v;
for 3 <i <6, we obtain a K¢ minor of M. It follows that vg neighbors v7, vg and
vg and that, as a set, {vs, v9} neighbors all the vertices of N. If {vy9, v;1} neighbors,

Figure 9. Subcase 3.2.4: deg, (vs) =4 and degy (v7) = 4.
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Figure 10. The unique graph of order 5, size 7, and minimum
degree 2, with exactly one vertex of degree 2.

as a set, any nonneighbors in N, say vy and vy, then contracting the edges vigvi1,
vav10, and all the edges of (vs, v7, vg, v9)r, We obtain a K¢ minor of M. If not, as
vg neighbors neither vig nor vy, we know that v¢ and v;; must both neighbor an
edge of N not incident to ve, say vov3. But since vy neighbors vy, vs, vs, vg, V1o
and v; and one of vg or vy, it follows that v, has degree 7 in M, a contradiction.

It follows that |[E(N)| < 7. If any of vy, ..., vs have degree at most 1 in N,
contracting the edge connecting that vertex to v; would produce minor of M of
order 10 and size at least 31, which would have a K¢ minor by Theorem 4. This
shows that §(N) > 2 and that |E(N)| > 5. Furthermore, if any of the degree-6
neighbors of v have degree 2 in N, contracting the edge connecting that neighbor
to v; would produce a nonapex graph of order 10 and size 30, with minimal degree
at least 5, and at most three vertices of degree 5. By Lemma 10, this graph would
contain a K¢ minor. This observation handles the cases |E(N)|=5and |E(N)| =6,
since any graph on five vertices with minimum degree 2 and size at most 6 has at
least two vertices of degree exactly 2.

Assume that |[E(N)| =7, §(N) =2, and N has only one vertex of degree 2.
Then N is isomorphic to the graph in Figure 10. Furthermore, degy (ve) is 2; thus
ve neighbors all the vertices of H. If v; neighbors two or more vertices of N, then
contracting vyv; for 2 <i <5 and H to one of its K4 minors (H has 8 edges and
5 vertices, by Theorem 4 it has a K4 minor) we obtain a K¢ minor. It follows that vy
connects to vg, vg, v1g and vy;. Furthermore, the open neighborhood of v; contains
exactly eight edges. By symmetry between v, and v; and Subcase 3.2, |[E(N)| =8,
it follows that M has a K¢ minor. O

3. Future explorations

(1) Is it true that any simple graph of order at most 14 and minimum degree at
least 6, which is not apex, contains a K¢-minor? Note that in the proof of Theorem 7,
we used weaker versions of Lemmas 9 and 10. Similar lemmas hold for graphs of
orders 13 and 12, respectively. They provide a first step in generalizing Theorem 7
for graphs of order at most 14.
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d

Figure 11. Graphs G| and G are identified along the highlighted
tetrahedra to obtain the graph G.

(2) The result of this paper shows that, for graphs of order 12, weaker assumptions
are needed for the conclusion of Jgrgensen’s conjecture to be true. What is the
minimum # > 12 for which the condition of minimum degree 6 is no longer sufficient
and the 6-connected condition is needed? Such n would have to be at most 22, as
the following example demonstrates.

Let G| ~ G, ~ K, * Ic, where Ic denotes the icosahedral graph (5-regular,
maximal planar, order 12). Let G denote a clique sum over K4 of G| and G, done
in such a way that the cones are not identified to each other (so that the maximum
degree of G is 15). In Figure 11, a; and a,, by and b, c; and ¢;, and d; and d>
are respectively identified. Then §(G) = 6, G is not apex, and it has no K¢ minor.
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