Vol. 13, No. 2, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 14
Issue 3, 361–540
Issue 2, 181–360
Issue 1, 1–179

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
Other MSP Journals
This article is available for purchase or by subscription. See below.
Spherical half-designs of high order

Daniel Hughes and Shayne Waldron

Vol. 13 (2020), No. 2, 193–203

We give some explicit examples of putatively optimal spherical half-designs, i.e., ones for which there is numerical evidence that they are of minimal size. These include a 16-point weighted spherical half-design of order 8 for 3 based on the pentakis dodecahedron. This gives rise to a 32-point weighted spherical 9-design for the sphere.

PDF Access Denied

However, your active subscription may be available on Project Euclid at

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 30.00:

spherical $t$-designs, spherical half-designs, tight spherical designs, finite tight frames, integration rules, cubature rules, cubature rules for the sphere, pentakis dodecahedron
Mathematical Subject Classification 2010
Primary: 05B30, 42C15, 65D30
Secondary: 94A12
Received: 5 September 2018
Revised: 3 June 2019
Accepted: 4 November 2019
Published: 30 March 2020

Communicated by David Royal Larson
Daniel Hughes
Department of Mathematics
University of Auckland
New Zealand
Shayne Waldron
Department of Mathematics
University of Auckland
New Zealand