Vol. 13, No. 2, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
Editors' interests
ISSN (electronic): 1944-4184
ISSN (print): 1944-4176
Author index
To appear
Other MSP journals
This article is available for purchase or by subscription. See below.
Spherical half-designs of high order

Daniel Hughes and Shayne Waldron

Vol. 13 (2020), No. 2, 193–203

We give some explicit examples of putatively optimal spherical half-designs, i.e., ones for which there is numerical evidence that they are of minimal size. These include a 16-point weighted spherical half-design of order 8 for 3 based on the pentakis dodecahedron. This gives rise to a 32-point weighted spherical 9-design for the sphere.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 30.00:

spherical $t$-designs, spherical half-designs, tight spherical designs, finite tight frames, integration rules, cubature rules, cubature rules for the sphere, pentakis dodecahedron
Mathematical Subject Classification 2010
Primary: 05B30, 42C15, 65D30
Secondary: 94A12
Received: 5 September 2018
Revised: 3 June 2019
Accepted: 4 November 2019
Published: 30 March 2020

Communicated by David Royal Larson
Daniel Hughes
Department of Mathematics
University of Auckland
New Zealand
Shayne Waldron
Department of Mathematics
University of Auckland
New Zealand