Vol. 13, No. 3, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 4, 547–726
Issue 3, 365–546
Issue 2, 183–364
Issue 1, 1–182

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
Other MSP Journals
This article is available for purchase or by subscription. See below.
Sharp sectional curvature bounds and a new proof of the spectral theorem

Maxine Calle and Corey Dunn

Vol. 13 (2020), No. 3, 445–454

We algebraically compute all possible sectional curvature values for canonical algebraic curvature tensors and use this result to give a method for constructing general sectional curvature bounds. We use a well-known method to geometrically realize these results to produce a hypersurface with prescribed sectional curvatures at a point. By extending our methods, we give a relatively short proof of the spectral theorem for self-adjoint operators on a finite-dimensional real vector space.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 30.00:

sectional curvature, canonical algebraic curvature tensor, spectral theorem
Mathematical Subject Classification 2010
Primary: 15A69
Secondary: 15A63, 53C21
Received: 16 October 2019
Revised: 17 March 2020
Accepted: 28 April 2020
Published: 14 July 2020

Communicated by Frank Morgan
Maxine Calle
Reed College
Portland, OR
United States
Corey Dunn
Mathematics Department
California State University at San Bernardino
San Bernardino, CA
United States