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We first describe an observation based on an analysis of data regarding the
outcomes of decisions in cases considered by the United States Supreme Court.
Based on this observation, we propose a simple model aiming toward producing
an objective notion of an ideology index. As an initial step in justifying this
concept we produce explicit formulas for the highest-energy eigenvectors of
reversible Markov chains with rank-2 transition matrices.

1. Introduction

The idea for this article came about when Zilli noticed a strong correlation between
the entries of an eigenvector built intrinsically only from the number of disagree-
ments between justices on the United States Supreme Court and an extrinsic index
defined roughly as the percent conservative decisions throughout the justices’ tenure,
where each decision’s direction is determined by a scheme developed by political
scientists.

The instances of disagreements between justices on the United States Supreme
Court (or any voting body wherein pairwise agreement or disagreement between
members can be discerned from vote records) can be expressed as weights on edges
of an undirected graph. That is, each justice is represented by a node, and the edge
connecting two nodes has weight equal to the number of times the corresponding
justices disagreed on the outcome of a case they both participated in. It was
hypothesized that techniques of spectral decomposition applied to such a graph
could allow for the quantification of each justice’s ideology. The significance of this
approach is that it does not require legal analysis of the ideological implications of
voting in a particular way on each case, which one would intuit as being essential
in studying judicial ideology. We apply this method to data from the Washington
University Law School’s Supreme Court Database [SCDB 2018] and compare the
results to the percent conservative measure of ideology resulting from the curated,
legal analysis of each case included in the database. The results correlate well (see
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Figure 1. We construct a disagreement graph for decisions ren-
dered from 1946 to 2018 (sourced from [SCDB 2018]) and derive
the highest-energy eigenvector for the random walk on this graph.
The plot shows the correlation between the eigenvector value and
the percent conservative decisions (calculated from the expert clas-
sifications in the database) of each justice from Burton (appointed
in 1945) through Kagan (2010): R2

= 0.349. When considering
only those justices from Burger (1969) through Kagan (represented
by ◦ on the plot), the correlation is much stronger: R2

= 0.831.

Figure 1), and we believe that this method may be applied to yield insight into
bodies for which such extensive expert analysis does not exist.

Specifically, we consider a weighted graph where the nodes represent justices, and
the weight on the edge between nodes x and y is a positive integer that represents the
number of cases on which justices x and y disagreed. Such a weighted graph induces
a reversible Markov chain. We propose the use of the (normalized) eigenvector v
that corresponds to the highest energy as an objective measure of the ideological
inclination of each of the justices, and we term it ideology index. The ideology index
for the justice represented by node x will be the value v(x) in the eigenvector v.

There are two reasons that led us to consider weights given by disagreements
rather than agreements. Firstly, instances of agreement between two judges include,
along with cases which have ideological implications, the cases which were relatively
uncontroversial (and would not be as indicative of judicial ideology). Conversely,
the very existence of a disagreement between judges indicates that the case was
contentious. That is, if one were to count the agreements between judges, there
would be no objective way to discern which of those agreements were a result of the
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judges hearing a relatively noncontentious case and which of the agreements were
along ideological grounds, whereas all disagreements are attributable to contention
between the judges, which is more likely caused by differences in their ideology.
Secondly, when we used the agreements data, the strongest correlation to ideology
was with the eigenvector corresponding to the eighth-largest eigenvalue (for a
37× 37 probability transition matrix). However, we were not able to find why
this particular eigenvector would have the strongest correlation with ideology. On
the other hand, when using disagreements, the strongest correlation was with the
highest-energy eigenvector. In hindsight, this is something that could have been
expected from considering the extreme case of bipartite graphs.

While developed independently, we believe that our model has similarities to
existing ideal point models, such as that of [Martin and Quinn 2002]. In an
ideal point model, one considers a justice’s ideological position as a point in
multidimensional Euclidean space, and the ideological implication of each decision
direction on each case is also represented as a point in that space. In such models,
the justice will vote in the direction whose point is closest to his or her own in
Euclidean distance. Our model is simpler in many of its assumptions compared to
Martin and Quinn’s, specifically in that we do not consider a justice’s ideal point as
dynamic throughout his or her career. On the other hand, if one has to describe a
justice’s voting record with just one number, we consider the measure given by this
model to be suitable and objective.

The structure of the paper is as follows. In Section 2 we collect a number of
background results on the random walk associated to a reversible Markov chain
and discuss the spectrum of the associated probability transition matrix. Section 3
contains the analysis of the highest-energy eigenvector for reversible Markov chains
with rank-2 transition matrices. The explicit formulas obtained in the rank-2 case
are then used to obtain estimates of the spectrum of a perturbed (higher-rank)
“disagreement matrix”. In Section 4 we conclude with a review of our results and
an invitation to the continuation of this study.

2. Random walk preliminaries

In this section we introduce briefly the notion of random walk associated to a
reversible Markov chain and some spectral properties; for details we refer to
Section 1.5 in [Chung 1997]. An alternative point of view is that of random walks
on electrical networks. For a thorough presentation of this approach we refer to
[Doyle and Snell 1984] or Chapter 9 in [Levin et al. 2009].

A network is an undirected connected graph G = (V, E), together with nonnega-
tive weightsw(x, y) defined for all x, y∈V. The numbersw(x, y) are conductances,
which are assumed positive if (x, y) is an edge in E and zero otherwise. Note that
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we may allow loops (i.e., an edge from a vertex to itself) in which case (x, x) ∈ E
and w(x, x) is positive. We assume the collection of weights forms a symmetric
N × N matrix W, where N = |V | is the number of vertices in the graph; i.e.,

for any two vertices x, y ∈ V, w(x, y)= w(y, x).

Define the degree of a vertex x ∈ V by

d(x)=
∑
y∈V

w(x, y). (2-1)

We denote by 1 the column vector with N entries all equal to 1.
The matrix P with entries

P(x, y) :=
w(x, y)

d(x)
satisfies P1=1, i.e.,

∑
y∈V

P(x, y)=1 for every fixed x . (2-2)

Therefore, the vertices V are the states of a Markov chain with probability transition
matrix P. An associated random walk is a sequence of random variables {X i }i≥0

satisfying for all i ≥ 0 and all x, y ∈ V that

Prob(X i+1 = y | X i = x)= P(x, y).

Note that even though the matrix of weights W is symmetric, in general P is not a
symmetric matrix.

On the set of nodes V we define a probability distribution π (think of it as a row
vector) with entries given by

π(x)=
d(x)∑
y d(y)

=
d(x)
vol G

,

where vol G =
∑

y d(y) is the total degree (the sum of the degrees of all vertices
in V ). It is easy to check that the Markov chain thus defined is reversible with
respect to the probability distribution π . By definition, this means that for any
x, y ∈ V it holds that

π(x)P(x, y)= π(y)P(y, x). (2-3)

A probability distribution σ on the set of states V of a Markov chain is called
stationary if and only if

σ P = σ ,

i.e., σ is a left eigenvector of P with eigenvalue 1. A direct check using (2-3) shows
that a reversible distribution π is also stationary.

A connected graph is bipartite if and only if V is the union of two nonempty
disjoint sets V1 and V2 such that w(x, y)= 0 whenever x, y ∈ V1 or x, y ∈ V2. The
case of bipartite graphs will be examined in what follows only as a limiting case.
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Throughout most of this work the graph G will be assumed nonbipartite. On a
nonbipartite connected graph any associated random walk is ergodic; i.e., there
exists a unique stationary distribution σ on V such that for any initial distribution
µ it holds that

lim
s→∞

µPs
= σ .

One of the major questions in the theory of reversible Markov chains is charac-
terizing the speed in the convergence

lim
s→∞

µPs
= π . (2-4)

In answering this question, the more powerful techniques use the spectrum (the
eigenvalues) and the eigenvectors of P.

The fact that P1 = 1 in (2-2) expresses the fact that 1 is an eigenvector of P
corresponding to eigenvalue 1. Actually, when coupled with the fact that the entries
of P are nonnegative, this relation means that every one of the rows of P is a
probability distribution on V. By applying P to a column vector u each entry in the
resulting vector Pu is an average of the entries of u, weighted with respect to the
corresponding row of P. This averaging characteristic makes P into a contraction
with respect to every convex norm on RN (this follows from Jensen’s inequality).
For example, on RN (which is identified with the space L2(V ) of functions from V
to R) consider the norm

‖u‖2 =
(∑

x

u2(x)
)1

2

.

Then for every u ∈ L2(V ) it holds that

‖Pu‖2 ≤ ‖u‖2.

In particular, if u is an eigenvector of P with eigenvalue α we have

‖Pu‖2 = ‖αu‖2 = |α|‖u‖2 ≤ ‖u‖2.

Therefore, every eigenvalue of P has to satisfy |α| ≤ 1.
Another consequence of reversibility is the fact that all eigenvalues of P are real.

This is due to the fact that relations (2-3) imply that P is similar to a symmetric
matrix S. Indeed, let d denote the vector of degrees, with entries given by (2-1),
and let D denote the diagonal matrix with d on the diagonal (and zero everywhere
else). Then, it is clear that

S := D
1
2 P D−

1
2 = D−

1
2 W D−

1
2

is a symmetric matrix. Since S and P have the same (real) eigenvalues, and because
of the contractive property of P, |α| ≤ 1, it follows that all eigenvalues of P are



808 FLORIN CATRINA AND BRIAN ZILLI

contained in the interval [−1, 1]. Let

5=
1

vol G
D = diag(π).

From the spectral decomposition

S =
N∑

i=1

αiφiφ
ᵀ
i , (2-5)

with {φi }i a set of orthonormal eigenvectors of the matrix S, we get that the
eigenvectors of P are given by 5−1/2φi and are orthonormal in L2

π (see below for
the definition of L2

π ).
We have already seen that α1= 1 is an eigenvalue of P with eigenvector 1. It is a

standard argument (again based on the averaging property of P) to show that when
the graph G is connected, α1 = 1 is a simple eigenvalue. Therefore the remaining
N − 1 eigenvalues of P are strictly less than 1.

The second-largest eigenvalue α2 of P is of great importance in estimating the
convergence speed in (2-4). By analogy with the spectral theory on manifolds, one
defines the matrix

L = Id−P,

which is called the (normalized) Laplacian of the weighted graph G. The spectrum
of L consists of eigenvalues λ= 1−α ∈ [0, 2]. We define the inner product space
L2
π (V ), weighted with respect to the stationary distribution π , where the inner

product is given by
〈u, v〉π =

∑
x

π(x)u(x)v(x).

Proposition 1. The equality

〈u, Lv〉π = 〈Lu, v〉π =
1

vol G

∑
(x,y)∈E

w(x, y)(u(x)− u(y))(v(x)− v(y)) (2-6)

holds.

Proof. If we denote by δx,y the Kronecker delta function, we have

〈u, Lv〉π =
∑
x∈V

π(x)u(x)(Lv)(x)=
∑

x,y∈V

d(x)
vol G

u(x)(δx,y − P(x, y))v(y),

therefore

〈u, Lv〉π =
1

vol G

{∑
x∈V

d(x)u(x)v(x)−
∑

x,y∈V

w(x, y)u(x)v(y)
}

=
1

vol G

{ ∑
x,y∈V

w(x, y)u(x)(v(x)− v(y))
}
.
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For every edge (x, y) ∈ E with x 6= y (recall that loops are allowed, but note that
the terms in the sum for which x = y are zero), terms involving x and y appear
twice in the sum above, with x and y reversed. That is, for each edge (x, y) with
x 6= y, there are two corresponding terms in the sum:

w(x, y)u(x)(v(x)− v(y)) and w(y, x)u(y)(v(y)− v(x)).

Since W is symmetric, w(x, y)= w(y, x), and the sum of these terms is

w(x, y)(u(x)− u(y))(v(x)− v(y)).

Therefore, indexing the sum over edges, we have (2-6). �

For u ∈ RN we define its energy by

E(u) := 〈u, Lu〉π =
1

vol G

∑
(x,y)∈E

w(x, y)(u(x)− u(y))2. (2-7)

The method of Lagrange multipliers gives that the eigenvalues of L are precisely
the critical levels of E subject to the constraint 〈u, u〉π = 1.

The minimum level of the energy E gives λ1=0, and it is achieved by the constant
eigenvector u= 1. This corresponds to the largest eigenvalue of P, α1= 1−λ1= 1.
The second-largest eigenvalue of P, α2= 1−λ2, corresponds to the second smallest
eigenvalue of L , given by

λ2 = inf
〈u,1〉π=0

〈u, Lu〉π
〈u, u〉π

.

The difference

1−α2 = λ2

is called the spectral gap of the graph and it gives a measure of the speed of
convergence in (2-4).

In this paper we will be concerned on the contrary with the smallest eigenvalue
of P, which we denote by β = αN , and with its corresponding eigenvector. In
terms of the eigenvalues of L , this corresponds to the largest eigenvalue, that is, the
maximum of E restricted to the ellipsoid 〈u, u〉π = 1. For this reason, we will call
the eigenvector corresponding to β the highest-energy eigenvector. As we have seen
above, β has to be a number in the interval [−1, 1). For a connected graph, −1 is
an eigenvalue if and only if G is bipartite. In our general setting G is not bipartite;
therefore except for the one eigenvalue 1, the remaining eigenvalues (including β)
will be in (−1, 1).
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3. Disagreement matrices

Assume we have a graph with a fixed number N of nodes (the justices), and each
node x has a probability px ∈ [0, 1] associated to it. In our proposed model, we
assume there exists an abstract notion of, say, ideal conservator, which indicates
how a pure ideological conservative would vote on every case. Then, px will
represent the probability that justice x will vote with the ideal conservator. We will
assume that for each justice, this probability is constant throughout their career.
The probabilities px will be collected as entries of a vector p which will be fixed
throughout. Our assumption that each px is constant throughout a justice’s career
is a major simplification in our model over earlier approaches, as for example in
[Martin and Quinn 2002].

For each x , let qx := 1− px also in [0, 1]. The disagreement matrix of this
system is defined as the matrix B with entries

Bxy =

{
0 if x = y,
pxqy + pyqx if x 6= y.

It has zero on the diagonal since a justice always votes in agreement with her/himself
and the off-diagonal entries represent the probabilities of disagreement (justices x
and y vote contrary to each other).

3.1. Rank-2 weight matrices. In this subsection we study the highest-energy eigen-
vector in a simpler (and less realistic) case when the diagonal entries in the disagree-
ment matrix are not equal to zero. In RN, let p and pᵀ denote the column and the
row vector, respectively, with entries px ∈ [0, 1], and similarly define the vectors q
and qᵀ with entries qx = 1− px ∈ [0, 1]. We discuss the spectrum of the probability
transition matrix PT associated with the rank-2 weight matrix T := pqᵀ+ q p .T We
note that B is equal to T except for the diagonal entries, which are replaced by
zero.

We begin with the following:

Proposition 2. In the generic case, i.e., p is not a constant vector, we have that p
and q are linearly independent vectors. In particular, T is a matrix of rank 2.

Proof. Assume that for real numbers a and b we have a p+ bq = 0. Then

0= a p+ b(1− p)= (a− b) p+ b1, i.e., (b− a) p= b1.

Since p is nonconstant, from the last equality we must have b = a = 0; therefore
the vectors p and q are linearly independent.

Next, we show that T has rank 2. Let p⊥ denote the (N−1)-dimensional space
of vectors in RN which are orthogonal to p, and similarly define q⊥. Since p and
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q are linearly independent vectors we have

dim( p⊥ ∩ q⊥)= N − 2.
Since

p⊥ ∩ q⊥ ⊂ ker T,

we have that
dim(ker T )≥ N − 2. (3-1)

On the other hand, the vectors T p and T q are linearly independent. Indeed,
aT p+ bT q = 0 implies

0= a( pᵀq) p+ a| p|2q+ b|q|2 p+ b( pᵀq)q,

and since q and p are linearly independent we must have

a| p|2+ b( pᵀq)= 0 and a( pᵀq)+ b|q|2 = 0.

The determinant of this system is∣∣∣∣| p|2 pᵀq
pᵀq |q|2

∣∣∣∣= | p|2|q|2− ( pᵀq)2 > 0

because the value of the determinant equals the square of the area of the parallelo-
gram spanned by p and q. Therefore, again we must have b = a = 0. Since T p
and T q are linearly independent, it means

dim(range T )≥ 2. (3-2)

From the rank-nullity theorem we have

dim(ker T )+ dim(range T )= N .

From this, it follows that both inequalities (3-1) and (3-2) are in fact equalities; i.e.,
T has rank 2. �

Define

sp =
∑

x

px and sq =
∑

x

qx , both in [0, N ], with sp + sq = N .

Since we work with the weight matrix T = pqᵀ+ q p ,T the degree of node x is the
sum of entries on row x of T,

d(x)=
∑

y

Txy = px

(∑
y

qy

)
+ qx

(∑
y

py

)
= px sq + qx sp.

Note that we can write

d(x)= (N − sp)px + sp(1− px),
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and since both numbers N − sp and sp are strictly positive, we have that d(x) > 0
for every x . We collect the degrees of all nodes in the vector d, therefore

d = sq p+ spq,

and denote by D := diag(d) the diagonal matrix with entries d(x) on the diagonal.
Define the probability transition matrix

PT := D−1T .

We have the following:

Theorem 3. In the generic case, i.e., p is not a constant vector, the matrix PT has

(1) the largest eigenvalue is equal to 1, it is simple, and has corresponding eigen-
vector 1;

(2) eigenvalue 0 with multiplicity N − 2 and corresponding eigenspace consisting
of all vectors orthogonal to both p and q, i.e.,

ker PT = ker T = p⊥ ∩ q⊥;

(3) simple eigenvalue β ∈ [−1, 0), with eigenvector v given explicitly in the
formulas (3-5) and (3-11) below.

Remark 4. As a consequence of the formulas (3-5) and (3-11) we will note that
the eigenvector v is monotonic in p. This means that as we order the vertices x of
the graph in increasing order of p, the values in the entries of v will also be either
in increasing or decreasing order.

Another consequence of these formulas are estimates (explicitly in terms of p
or d) for the maximum values ‖v‖∞ given in (3-6) and (3-12).

Proof of Theorem 3. Part (1) follows from the general theory presented in Section 2.
Part (2) is immediate from the fact that the matrix D−1 is diagonal with no zeros

on the diagonal, together with the fact from Proposition 2 that rank T = 2.
For part (3) we will distinguish the following two cases:

Case 1: sp = N/2. Since q = 1− p we have

sq = N − sp =
N
2
, d = sq p+ spq = N

2
1 and D = N

2
Id .

Also,

|q|2 =
∑

x

q2
x =

∑
x

(1− px)
2
=

∑
x

(1− 2px + p2
x)= N − 2sp +

∑
x

p2
x = | p|

2,

and
pᵀq = pᵀ(1− p)= sp − | p|2 =

N
2
− | p|2.
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Consider the vector
u = p− q = 2 p− 1.

Then

T u= ( pqᵀ+q pᵀ)( p−q)= ( pᵀq)( p−q)+| p|2q−|q|2 p=
(N

2
−2| p|2

)
( p−q).

Therefore

T u =
(

1−
4| p|2

N

)
N
2

u =
(

1−
4| p|2

N

)
Du. (3-3)

Note that because sp = N/2, by the Cauchy–Schwarz inequality we have

N 2

4
=

(∑
x

px

)2

≤ N
∑

x

p2
x = N | p|2,

i.e.,

1≤
4| p|2

N
.

In fact, the inequality above is strict as the only possibility for equality is when p
is constant.

Since PT =D−1T, by multiplying (3-3) on the left by D−1, we get that PT u=βu
with

β = 1−
4| p|2

N
< 0. (3-4)

The stationary distribution in this case is the uniform distribution, i.e., π(x)= 1/N .
It is common to normalize the eigenvectors in the L2

π norm. That is, if v = cu, we
require

1= ‖v‖2π =
c2

N
|u|2 =

c2

N
(| p|2+ |q|2− 2 pᵀq)= c2

(
4| p|2

N
− 1
)
.

Therefore

v = c( p− q), with c =
(

4| p|2

N
− 1
)− 1

2

. (3-5)

We note that, because v = c( p− q) = c(2 p− 1) with c > 0, we have that v is
monotonically increasing in p; that is, nodes x with larger px also have larger vx .

Because −1 ≤ 2 p− 1 ≤ 1, from (3-5) we get the pointwise estimate for the
entries of v,

‖v‖∞ = c max{(2pmax− 1), (1− 2pmin)} ≤
1√

4| p|2/N − 1
. (3-6)

Case 2: sp 6= N/2. In this case,

d = sq p+ spq = sp1+ (N − 2sp) p
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is not a constant vector anymore, and together 1 and d form a basis for the range
of T. Indeed, from Proposition 2 we know that rank T = 2. In fact, the range of T
is equal to the span of the vectors p and q. That p is in the range of T can be seen
by applying T to the component of q orthogonal to p

orth p q := q−
pᵀq
| p|2

p.

Then

T orth p q =
(
|q|2−

( pᵀq)2

| p|2

)
p.

Since the vectors p and q are not proportional, the Cauchy–Schwarz inequality

( pᵀq)2 ≤ | p|2|q|2

is strict and therefore the coefficient of p above is strictly positive. By a similar
argument, q is in the range of T. Since the vectors

1= p+ q and d = T 1

are in the range of T and are linearly independent, they form a basis for the range
of T.

We introduce the notation

A(d)=
∑

x d(x)
N

and H(d)=
N∑

x 1/d(x)

for the arithmetic and harmonic means, respectively, of the entries of the vector of
degrees d. Consider the vector

u = 1− A(d)D−11. (3-7)

We show that for a β ∈ [−1, 0) specified below in (3-8), we have PT u = βu.
First we note that because d is not a constant vector, we have

Du = d− A(d)1 6= 0.
From this, together with

1ᵀDu = 0,

we deduce that 1 and Du are nonzero, perpendicular, vectors in the range of T.
Since the range of T is 2-dimensional, if we show that T u is also perpendicular

to 1, it follows that for some real β,

T u = βDu, i.e., PT u = βu.

We show that 1ᵀT u = 0. Indeed, we have

1ᵀT u= (T 1)ᵀ(1−A(d)D−11)= dᵀ(1−A(d)D−11)=N A(d)−A(d)dᵀD−11=0.
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The only thing left to check is that −1 ≤ β < 0. We do this by calculating the
trace of PT . On one hand, since the trace of a square matrix equals the sum of its
eigenvalues, and N − 2 of the eigenvalues of PT are zero, we have Tr PT = 1+β,
and therefore

β = Tr PT − 1. (3-8)

On the other hand,

Tr PT =
∑

x

2pxqx

d(x)
=

∑
x

2pxqx

sq px + spqx

=

∑
x

2
sq/qx + sp/px

≤

∑
x

qx/sq + px/sp

2
= 1.

The inequality above follows from the term-by-term inequality between the har-
monic and arithmetic means of two positive numbers

2
sq/qx + sp/px

≤
qx/sq + px/sp

2
,

with equality if and only if
qx

sq
=

px

sp
.

Since the equality cannot hold for all x (otherwise p would be constant), we obtain
that 0 < Tr PT < 1, that is, −1 < β < 0. In the calculation above, we implicitly
assumed that for all x we have px ∈ (0, 1). If px is equal to either 0 or 1, then the
term 2pxqx/d(x) corresponding to x in Tr PT is zero, and thus strictly smaller than

qx/sq + px/sp

2
.

As we shall see in the next subsection, if for every x we have that px is equal to
either 0 or 1, then Tr PT = 0 and therefore β = −1. This is the case of bipartite
graphs.

Alternatively, one may estimate β from T u= βDu by multiplying by uᵀ on the
left. We get

β =
uᵀT u
uᵀDu

. (3-9)

The denominator in (3-9) is readily calculated as

uᵀDu = (1ᵀ− A(d)1ᵀD−1)Du = 1ᵀDu− A(d)1ᵀu.

Since 1ᵀDu = 0, we get

uᵀDu =−A(d)
(

N − A(d)
∑

x

1
d(x)

)
=−A(d)

(
N − N

A(d)
H(d)

)
,
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which means

uᵀDu = N A(d)
(

A(d)
H(d)

− 1
)
> 0. (3-10)

The fact that the quantity in parentheses above is positive follows from the inequality
between harmonic and arithmetic means. The calculation that shows that uᵀT u< 0,
however, can be quite tedious.

The equilibrium measure in this case is not uniform anymore. It will be given by

π(x)=
d(x)∑
y d(y)

=
d(x)

N A(d)
.

Again, we would like the eigenvector corresponding to eigenvalue β to be normalized
in the L2 norm weighted by π . That is, if v = cu, we require

1= ‖v‖2π =
c2

N A(d)
uᵀDu =

c2

N A(d)
N A(d)

(
A(d)
H(d)

− 1
)
= c2

(
A(d)
H(d)

− 1
)
.

Therefore the normalized eigenvector corresponding to eigenvalue β is

v = c(1− A(d)D−11), with c =
(

A(d)
H(d)

− 1
)− 1

2

. (3-11)

Since we are in the case sp 6= N/2, we have that

d = sq p+ spq = (sq − sp) p+ sp1

is monotonic in p and therefore so is the vector D−11. From the formula (3-11)
we conclude that v is monotonic in p. Also, observe that v changes sign precisely
between the values of d which are above and below A(d).

From the monotonicity of v we conclude that

max
x
|vx | = ‖v‖∞ for x such that either px = pmin or px = pmax.

Precisely, we have

‖v‖∞ =
max{(1− A(d)/dmax), (A(d)/dmin− 1)}√

A(d)/H(d)− 1
, (3-12)

completing the proof. �

In the next subsection we discuss briefly the case when every px is either 0 or 1.

3.2. The case px ∈ {0, 1}. In our setting with px ∈ [0, 1], because every term in
Tr PT is nonnegative, we only get Tr PT = 0 when all the px are categorical, i.e.,
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px = 0 or px = 1. Assume m of px are equal to 1 and n = N −m are equal to 0;
then the matrix T has the form

T =
[

0m×m 1m×n

1n×m 0n×n

]
,

where the diagonal zero blocks are of size m×m and n× n. The degrees are

dx = n when px = 1 and dx = m when px = 0.

The graph associated to the Markov chain with probability transition matrix PT =

D−1T is bipartite and PT has the smallest eigenvalue β =−1. The corresponding
eigenvector v has

vx = 1 when px = 1 and vx =−1 when px = 0.

Indeed, both formulas given in (3-5) and in (3-11) reduce to β = −1 and to the
eigenvector v above:

If m = n = N/2 we have | p|2 = N/2 so that (3-5) yields c = 1.
If m < n, then

A(d)=
2mn

N
, H(d)=

Nmn
m2+ n2 ,

and from (3-11) we get

u =
n−m

N



1
...

1
−1
...

−1


and c =

N
n−m

,

and thus v = cu as above.

3.3. The eigenvalues of the transition matrix PB . A more realistic model would
consider a disagreement matrix B equal to T everywhere except on the diagonal,
where the entries are made equal to 0 (a justice never votes contrary to their own
vote). As before, we define the degrees vector dB with entries

dB(x)=
∑

y

Bxy =
∑
y 6=x

Txy = px sq + qx sp − 2pxqx .

Let PB = D−1
B B be the probability transition matrix associated to B, where DB

is the diagonal matrix with d on the diagonal. The study of the spectrum and the
eigenvectors of PB is itself an interesting problem.
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Observe that for N = 2 we have

PB =

[
0 1
1 0

]
,

and its eigenvalues are 1 and −1 with eigenvectors given respectively by

1=
[

1
1

]
and

[
1
−1

]
.

In general, the matrices B, and consequently PB , no longer have rank 2. However,
numerical simulations lead (at least in the case when N is relatively large and the
values of p are well distributed in [0, 1]) to the following

Conjecture 5. Besides the eigenvalue λ= 1, the remaining N − 1 eigenvalues are
negative with N−2 of them close to 0, while the smallest is less than β (the smallest
eigenvalue of PT ).

Conjecture 6. The highest-energy eigenvector of PB seems to remain monotonic in
p and it is close to the corresponding eigenvector of PT .

We should warn the reader that our use of the word “conjecture” in this paper is
not in the sense it is used traditionally in mathematics, but more with the meaning
of “guess”.

While the conjecture about the sign of the eigenvalues of PB is true, as we
prove in the Theorem 8 next, the conjecture about the monotonicity in p of the
highest-energy eigenvector of PB fails. This was again observed numerically for
small values of N (N = 3 and N = 4) and it naturally leads to the following:

Question 7. What conditions on p ensure the monotonicity (in p) of the highest-
energy eigenvector of PB?

We now prove the following:

Theorem 8. The probability transition matrix PB has the largest eigenvalue 1,
while the remaining N − 1 eigenvalues are negative, with the smallest satisfying
βB ≤ βT , with equality if and only if px ∈ {0, 1} for all x (hence the bipartite case
from Section 3.2).

Proof. Our method of proof is to relate the eigenvalues of PB to those of PT in
Section 3.1. For this we denote by e the vector with entries e(x)= 2pxqx , and by
E := diag(e), the diagonal matrix with e on the diagonal. Note that

T = B+ E and dT = dB + e.

Let u be a nonconstant eigenvector of PB corresponding to an eigenvalue α < 1.
We show that the eigenvalue of Id−PB given by λ = 1 − α is greater than 1
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and therefore α < 0. For this we estimate the energy EB(u) given by (2-7) with
w(x, y)= pxqy + pyqx .

From the spectral decomposition (2-5) we have that u is perpendicular to 1 with
respect to π , and therefore with respect to the weight dB ; i.e.,

〈u, 1〉dB = 〈u, dB〉 =
∑
x∈V

dB(x)u(x)= 0.

Consider the (unique) decomposition

u = a1+ v,

where a is a real number, and v is perpendicular to 1 with respect to dT . Since u is
nonconstant, the vector v is nonzero. The coefficient of 1 in the decomposition of u
above is the scalar projection of u on 1 with respect to the inner product weighted
by dT , and it can be calculated as

a =
〈u, e〉

vol(GT )
=
〈u, e〉
2spsq

. (3-13)

Indeed, from the fact that dT = dB + e, we obtain

〈u, dT 〉 = 〈u, dB〉︸ ︷︷ ︸
=0

+〈u, e〉, therefore 〈a1, dT 〉+ 〈v, dT 〉︸ ︷︷ ︸
=0

= 〈u, e〉.

Since 〈1, dT 〉 = vol(GT )= 2spsq , formula (3-13) follows.
Observe that because v is perpendicular to 1 with respect to the weight dT then

v is in the sum of the eigenspaces of T with nonpositive eigenvalues. Therefore the
energy ET (v) is bounded from below by ‖v‖2πT

= 〈v, v〉πT . This means,

vol(GT )ET (v)≥ 〈v, v〉dT =

∑
x∈V

dT (x)v2(x)=
∑
x∈V

dB(x)v2(x)+
∑
x∈V

e(x)v2(x).

As v(x)= (u(x)− a) for every x , we have∑
x∈V

dB(x)v2(x)=
∑
x∈V

dB(x)(u(x)− a)2

=

∑
x∈V

dB(x)u2(x)+ a2 vol(G B)− 2a
∑
x∈V

dB(x)u(x)︸ ︷︷ ︸
=0

.

Since ET (u)= ET (v), we obtain

vol(G B)EB(u)= vol(GT )ET (v)≥
∑
x∈V

dB(x)u2(x)+ a2 vol(G B)+
∑
x∈V

e(x)v2(x).

Therefore

EB(u)≥ ‖u‖2πB
+ a2
+

1
vol(G B)

∑
x∈V

e(x)v2(x),
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and so
EB(u)= (1−α)‖u‖2πB

≥ ‖u‖2πB
, i.e., α ≤ 0.

Observe that from (3-13) we have a2 > 0 unless u⊥ e. Also, under the assumption
that px ∈ (0, 1) for all x , we have

∑
x∈V e(x)v2(x) > 0. Thus, the only cases of

equality EB(u) = ‖u‖2πB
happen when a = 0, i.e., u = v, and u(x) = 0 for any x

with px ∈ (0, 1).
To estimate the highest-energy eigenvalue βB of PN , we use the variational

characterization

(1−βB)=max
u 6=0

EB(u)
‖u‖2πB

.

Let v be the eigenvector corresponding to the highest-energy eigenvalue βT of PT

and consider a test vector u= a1+v, where a is picked such that u is perpendicular
to 1 with respect to the weight dB . Then,

(1−βB)≥
EB(u)
‖u‖2πB

= vol(GT )
ET (u)∑

x∈V dB(x)u2(x)
= (1−βT )

∑
x∈V dT (x)v2(x)∑
x∈V dB(x)u2(x)

.

As before,∑
x∈V

dT (x)v2(x)=
∑
x∈V

dB(x)v2(x)+
∑
x∈V

e(x)v2(x)

= vol(G B)a2
+

∑
x∈V

dB(x)u2(x)+
∑
x∈V

e(x)v2(x)≥
∑
x∈V

dB(x)u2(x).

Therefore (1−βB)≥ (1−βT ) with strict inequality if px ∈ (0, 1) for all x . �

4. Conclusions and future directions

There are two aspects associated with the subject of this paper. One is the modeling
aspect together with the proposal of a new measure, the ideology index, in the
concrete case of the United States Supreme Court, and the other aspect consists of
the theoretical investigations of further simplifications of the model.

Regarding the model, we begin with a data set that records only the number
of cases on which any given pair of justices voted opposite to each other. From
this matrix we create a network to which we associate a reversible Markov chain.
The states of the Markov chain are the nodes of the network, and in our model
each node corresponds to a Supreme Court justice. We singled out the eigenvector
of the transition probability matrix that corresponds to the smallest eigenvalue,
normalized so that it has length 1 in L2

π (weighted by the reversible measure π).
Then, we analyzed the function, which we termed the ideology index, which assigns
to each node the corresponding entry in this eigenvector. We should remark that
this function gives only a relative measure, as opposed to an absolute measure, in
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the sense that, in order to assign a meaning to the value at x , one has to relate it
to the values at the other nodes in the graph. On the other hand, it is an objective
function, free from any subjective interpretation, being defined entirely from the
recorded data.

The [SCDB 2018] contains data compiled by legal scholars indicating whether a
case carried ideological implications and the direction (conservative or liberal) the
justices voted in every such case. For each justice, we used these data to calculate
the frequency with which their votes coincided with conservative ideology, and
observed a strong correlation between these frequencies and the entries in the
eigenvector corresponding to the smallest eigenvalue. This observation was one of
the main motivations for undergoing this study.

For the theoretical investigation, in order to study the eigenvalues of a transition
matrix of a reversible Markov chain PB obtained from a disagreement matrix
B = B( p) with p ∈ [0, 1]N, our approach was to study the spectrum of PT for the
matrix T = pqᵀ + q pᵀ first. We found explicit formulas for the highest-energy
eigenvector of PT . It would be interesting to investigate whether similar formulas for
the highest-energy eigenvector of PB exist. Even without such formulas, numerical
simulations suggest that the two eigenvectors are close to each other, and therefore
have similar properties as for example monotonicity in p or boundedness estimates.
One should then decide whether such properties grant the entries of the highest-
energy eigenvector of PB the quality of an objective measure of an ideology index.

Confirmation for the validity and robustness of our model can be achieved by
selecting appropriately the vector p and comparing the output of the numerical
implementation to the results given by formula (3-5) or (3-11). We propose two
different ways to obtain an acceptable vector p adapted to the model. The first
method is the one we used in order to obtain the y-axis values in the plot in Figure 1.

To obtain the vector p, we used the frequencies calculated from the [SCDB
2018], as described above. The ability to calculate such frequencies was dependent
upon the case-by-case legal analysis of ideology included in the database. Such
comprehensive analysis may not exist for other data sets.

An alternative method that can be used to obtain the vector p is the following
procedure. Consider data collected over a continuous time period, spanning the
careers of N justices. In the following, by case we mean only those cases in the
Supreme Court on which there was not an unanimous decision. Let C denote the
N × N symmetric matrix with entries C(x, y) representing the number of cases
justices x and y disagreed on. Denote by n(x, y) the number of cases justices x
and y served together. For a vector p ∈ [0, 1]N define the disagreement matrix
B = B( p) to be equal to ( pqᵀ+ q pᵀ) off the diagonal, and zero on the diagonal.
A natural candidate for p is obtained by minimizing over p ∈ [0, 1]N the square
distance between the matrix C and the matrix with entries n(x, y)B(x, y). By this



822 FLORIN CATRINA AND BRIAN ZILLI

we mean minimizing the function

f ( p) :=
∑
x 6=y

(n(x, y)(px + py − 2px py)−C(x, y))2.

The general direction would be to investigate whether one can obtain useful estimates
on the minimum value of the function f , and whether these estimates are transferable
further to the distance between the highest-energy eigenvector of PB and that of PC .
Should this program be successful, the highest-energy eigenvector of PC would
provide an objective measure of the proposed ideology index.
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